1000 resultados para Modelação de sistemas de distribuição de água


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação de mestrado tem como finalidade analisar a gestão das perdas não técnicas de energia elétrica e entender as metodologias adotadas nos projeto de combate a essas perdas desenvolvidas pelas concessionárias de distribuição. Trazendo, assim, à superfície, a importância de uma gestão eficiente das perdas comerciais para se obter uma boa manutenção dos seus índices. É no sistema de distribuição de energia onde ocorre a maior porcentagem das perdas dos sistemas elétricos de potência. Sendo, portanto, a parte do sistema elétrico com maior potencial para redução das perdas. Assim, o enfoque desta dissertação é fazer uma análise das perdas não técnicas, das formas de atuação sobre elas e das metodologias utilizadas pelas concessionárias atualmente, as quais serão apresentadas através de um estudo de caso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Aquicultura - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an ever more competitive environment, power distribution companies must satisfy two conflicting objectives: minimizing investment costs and the satisfaction of reliability targets. The network reconfiguration of a distribution system is a technique that well adapts to this new deregulated environment for it allows improvement of reliability indices only opening and closing switches, without the onus involved in acquiring new equipment. Due to combinatorial explosion problem characteristic, in the solution are employed metaheuristics methods, which converge to optimal or quasi-optimal solutions, but with a high computational effort. As the main objective of this work is to find the best configuration(s) of the distribution system with the best levels of reliability, the objective function used in the metaheuristics is to minimize the LOLC - Loss Of Load Cost, which is associated with both, number and duration of electric power interruptions. Several metaheuristics techniques are tested, and the tabu search has proven to be most appropriate to solve the proposed problem. To characterize computationally the problem of the switches reconfiguring was developed a vector model (with integers) of the representation of the switches, where each normally open switch is associated with a group of normally closed switches. In this model simplifications have been introduced to reduce computational time and restrictions were made to exclude solutions that do not supply energy to any load point of the system. To check violation of the voltage and loading criteria a study of power flow for the ten best solutions is performed. Also for the ten best solutions a reliability evaluation using Monte Carlo sequential simulation is performed, where it is possible to obtain the probability distributions of the indices and thus calculate the risk of paying penalty due to not meeting the goals. Finally, the methodology is applied in a real Brazilian distribution network, and the results are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of rainwater for non-potable purposes generates a reduction in the consumption of treated water, however, this reduction is not observed in the generation of wastewater, as this is independent of the water source. In Brazil, the pricing on the services of collection and treatment of sewage, in general, is based on the coefficient of return of the sewage disposal system, which has a relation sewer / water proportional to the consumption of treated water measured at the consumer unit. The use of rainwater originating from utilization systems infer on the coefficient, underestimating the volume of wastewater generated. Therefore, this study presents a methodology for setting the coefficient of return. Different roof areas, reservoir volumes and rates of water consumption situations were simulated. The behavior of adjustment of the coefficient of return were also analyzed for the average area per capita roof (m² / inhabitant) of Rio Claro - SP. As a result, it can be seen that the adjustment of the coefficient of return is directly proportional to the increase of the roof areas and the volumes of reservoirs, and inversely proportional to the total water demand. The corrected coefficient of return showed the minimum value of 0.83 and a maximum value of 1.45, this variation corresponds to the maximum ratio between the demands of total water and rainwater, since the exploitation of rain water should be used only for non-potable uses, according to NBR 15527 / 07. To the municipality of Rio Claro - SP was noted an adjustment of the coefficient of return ranging from 0.99 to 6.61