990 resultados para Model Indices
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
This chapter explains a functional integral approach about impurity in the Tomonaga–Luttinger model. The Tomonaga–Luttinger model of one-dimensional (1D) strongly correlates electrons gives a striking example of non-Fermi-liquid behavior. For simplicity, the chapter considers only a single-mode Tomonaga–Luttinger model, with one species of right- and left-moving electrons, thus, omitting spin indices and considering eventually the simplest linearized model of a single-valley parabolic electron band. The standard operator bosonization is one of the most elegant methods developed in theoretical physics. The main advantage of the bosonization, either in standard or functional form, is that including the quadric electron–electron interaction does not substantially change the free action. The chapter demonstrates the way to develop the formalism of bosonization based on the functional integral representation of observable quantities within the Keldysh formalism.
Resumo:
Purpose: The aims of this study were to develop an algorithm to accurately quantify Vigabatrin (VGB)-induced central visual field loss and to investigate the relationship between visual field loss and maximum daily dose, cumulative dose and duration of dose. Methods: The sample comprised 31 patients (mean age 37.9 years; SD 14.4 years) diagnosed with epilepsy and exposed to VGB. Each participant underwent standard automated static visual field examination of the central visual field. Central visual field loss was determined using continuous scales quantifying severity in terms of area and depth of defect and additionally by symmetry of defect between the two eyes. A simultaneous multiple regression model was used to explore the relationship between these visual field parameters and the drug predictor variables. Results: The regression model indicated that maximum VGB dose was the only factor to be significantly correlated with individual eye severity (right eye: p = 0.020; left eye: p = 0.012) and symmetry of visual field defect (p = 0.024). Conclusions: Maximum daily dose was the single most reliable indicator of those patients likely to exhibit visual field defects due to VGB. These findings suggest that high maximum dose is more likely to result in visual field defects than high cumulative doses or those of long duration.
Resumo:
A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif
Resumo:
There is growing popularity in the use of composite indices and rankings for cross-organizational benchmarking. However, little attention has been paid to alternative methods and procedures for the computation of these indices and how the use of such methods may impact the resulting indices and rankings. This dissertation developed an approach for assessing composite indices and rankings based on the integration of a number of methods for aggregation, data transformation and attribute weighting involved in their computation. The integrated model developed is based on the simulation of composite indices using methods and procedures proposed in the area of multi-criteria decision making (MCDM) and knowledge discovery in databases (KDD). The approach developed in this dissertation was automated through an IT artifact that was designed, developed and evaluated based on the framework and guidelines of the design science paradigm of information systems research. This artifact dynamically generates multiple versions of indices and rankings by considering different methodological scenarios according to user specified parameters. The computerized implementation was done in Visual Basic for Excel 2007. Using different performance measures, the artifact produces a number of excel outputs for the comparison and assessment of the indices and rankings. In order to evaluate the efficacy of the artifact and its underlying approach, a full empirical analysis was conducted using the World Bank's Doing Business database for the year 2010, which includes ten sub-indices (each corresponding to different areas of the business environment and regulation) for 183 countries. The output results, which were obtained using 115 methodological scenarios for the assessment of this index and its ten sub-indices, indicated that the variability of the component indicators considered in each case influenced the sensitivity of the rankings to the methodological choices. Overall, the results of our multi-method assessment were consistent with the World Bank rankings except in cases where the indices involved cost indicators measured in per capita income which yielded more sensitive results. Low income level countries exhibited more sensitivity in their rankings and less agreement between the benchmark rankings and our multi-method based rankings than higher income country groups.
Resumo:
This study examines the performance of series of two geomagnetic indices and series synthesized from a semi-empirical model of magnetospheric currents, in explaining the geomagnetic activity observed at Northern Hemipshere's mid-latitude ground-based stations. We analyse data, for the 2007 to 2014 period, from four magnetic observatories (Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA), at geomagnetic latitudes between 40° and 50° N. The quiet daily (QD) variation is firstly removed from the time series of the geomagnetic horizontal component (H) using natural orthogonal components (NOC) tools. We compare the resulting series with series of storm-time disturbance (Dst) and ring current (RC) indices and with H series synthesized from the Tsyganenko and Sitnov (2005, doi:10.1029/2004JA010798) (TS05) semi-empirical model of storm-time geomagnetic field. In the analysis, we separate days with low and high local K-index values. Our results show that NOC models are as efficient as standard models of QD variation in preparing raw data to be compared with proxies, but with much less complexity. For the two stations in Europe, we obtain indication that NOC models could be able to separate ionospheric and magnetospheric contributions. Dst and RC series explain the four observatory H-series successfully, with values for the mean of significant correlation coefficients, from 0.5 to 0.6 during low geomagnetic activity (K less than 4) and from 0.6 to 0.7 for geomagnetic active days (K greater than or equal to 4). With regard to the performance of TS05, our results show that the four observatories separate into two groups: Coimbra and Panagyurishte, in one group, for which the magnetospheric/ionospheric ratio in QD variation is smaller, a dominantly QD ionospheric contribution can be removed and TS05 simulations are the best proxy; Boulder and Novosibirsk,in the other group, for which the ionospheric and magnetospheric contributions in QD variation can not be differentiated and correlations with TS05 series can not be made to improve. The main contributor to magnetospheric QD signal are Birkeland currents. The relatively good success of TS05 model in explaining ground-based irregular geomagnetic activity at mid-latitudes makes it an effective tool to classify storms according to their main sources. For Coimbra and Panagyurishte in particular, where ionospheric and magnetospheric daily contributions seem easier to separate, we can aspire to use the TS05 model for ensemble generation in space weather (SW) forecasting and interpretation of past SW events.
Resumo:
Drought is a key factor affecting forest ecosystem processes at different spatio-temporal scales. For accurately modeling tree functioning ? and thus for producing reliable simulations of forest dynamics ? the consideration of the variability in the timing and extent of drought effects on tree growth is essential, particularly in strongly seasonal climates such as in the Mediterranean area. Yet, most dynamic vegetation models (DVMs) do not include this intra-annual variability of drought effects on tree growth. We present a novel approach for linking tree-ring data to drought simulations in DVMs. A modified forward model of tree-ring width (VS-Lite) was used to estimate seasonal- and site-specific growth responses to drought of Scots pine (Pinus sylvestris L.), which were subsequently implemented in the DVM ForClim. Ring-width data from sixteen sites along a moisture gradient from Central Spain to the Swiss Alps, including the dry inner Alpine valleys, were used to calibrate the forward ring-width model, and inventory data from managed Scots pine stands were used to evaluate ForClim performance. The modified VS-Lite accurately estimated the year-to-year variability in ring-width indices and produced realistic intra-annual growth responses to soil drought, showing a stronger relationship between growth and drought in spring than in the other seasons and thus capturing the strategy of Scots pine to cope with drought. The ForClim version including seasonal variability in growth responses to drought showed improved predictions of stand basal area and stem number, indicating the need to consider intra-annual differences in climate-growth relationships in DVMs when simulating forest dynamics. Forward modeling of ring-width growth may be a powerful tool to calibrate growth functions in DVMs that aim to simulate forest properties in across multiple environments at large spatial scales.