926 resultados para Mixed binary nonlinear programming
Resumo:
O presente estudo considera a aplicação do modelo SISAGUA de simulação matemática e de otimização para a operação de sistemas de reservatórios integrados em sistemas complexos para o abastecimento de água. O SISAGUA utiliza a programação não linear inteira mista (PNLIM) com os objetivos de evitar ou minimizar racionamentos, equilibrar a distribuição dos armazenamentos em sistemas com múltiplos reservatórios e minimizar os custos de operação. A metodologia de otimização foi aplicada para o sistema produtor de água da Região Metropolitana de São Paulo (RMSP), que enfrenta a crise hídrica diante de um cenário de estiagem em 2013-2015, o pior na série histórica dos últimos 85 anos. Trata-se de uma região com 20,4 milhões de habitantes. O sistema é formado por oito sistemas produtores parcialmente integrados e operados pela Sabesp (Companhia de Saneamento do Estado de São Paulo). A RMSP é uma região com alta densidade demográfica, localizada na Bacia Hidrográfica do Alto Tietê e caracterizada pela baixa disponibilidade hídrica per capita. Foi abordada a possibilidade de considerar a evaporação durante as simulações, e a aplicação de uma regra de racionamento contínua nos reservatórios, que transforma a formulação do problema em programação não linear (PNL). A evaporação se mostrou pouco representativa em relação a vazão de atendimento à demanda, com cerca de 1% da vazão. Se por um lado uma vazão desta magnitude pode contribuir em um cenário crítico, por outro essa ordem de grandeza pode ser comparada às incertezas de medições ou previsões de afluências. O teste de sensibilidade das diferentes taxas de racionamento em função do volume armazenado permite analisar o tempo de resposta de cada sistema. A variação do tempo de recuperação, porém, não se mostrou muito significativo.
Resumo:
The optimal integration between heat and work may significantly reduce the energy demand and consequently the process cost. This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs) in which the pressure levels of the process streams can be adjusted to enhance the heat integration. A superstructure is proposed for the HEN design with pressure recovery, developed via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation. The process conditions (stream temperature and pressure) must be optimized. Furthermore, the approach allows for coupling of the turbines and compressors and selection of the turbines and valves to minimize the total annualized cost, which consists of the operational and capital expenses. The model is tested for its applicability in three case studies, including a cryogenic application. The results indicate that the energy integration reduces the quantity of utilities required, thus decreasing the overall cost.
Resumo:
The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure (HP) and low-pressure (LP) streams, achieved by pressure manipulation equipment running on common axes. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as stand-alone compressors, turbines and valves. Helper motors and generators are used to respond to any demand and excess of energy. Moreover, between the WEN stages the streams are sent to the HEN to promote thermal recovery, aiming to enhance the work integration. A multi-stage superstructure is proposed to represent the process. The WEN superstructure is optimized in a mixed-integer nonlinear programming (MINLP) formulation and solved with the GAMS software, with the goal of minimizing the total annualized cost. Three examples are conducted to verify the accuracy of the proposed method. In all case studies, the heat integration between WEN stages is essential to improve the pressure recovery, and to reduce the total costs involved in the process.
Resumo:
We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.
Resumo:
This paper introduces a new optimization model for the simultaneous synthesis of heat and work exchange networks. The work integration is performed in the work exchange network (WEN), while the heat integration is carried out in the heat exchanger network (HEN). In the WEN synthesis, streams at high-pressure (HP) and low-pressure (LP) are subjected to pressure manipulation stages, via turbines and compressors running on common shafts and stand-alone equipment. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as helper motors and generators to respond to any shortage and/or excess of energy, respectively, in the SSTC axes. The heat integration of the streams occurs in the HEN between each WEN stage. Thus, as the inlet and outlet streams temperatures in the HEN are dependent of the WEN design, they must be considered as optimization variables. The proposed multi-stage superstructure is formulated in mixed-integer nonlinear programming (MINLP), in order to minimize the total annualized cost composed by capital and operational expenses. A case study is conducted to verify the accuracy of the proposed approach. The results indicate that the heat integration between the WEN stages is essential to enhance the work integration, and to reduce the total cost of process due the need of a smaller amount of hot and cold utilities.
Resumo:
This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.
Resumo:
This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The BBMCSFilter method was developed to solve mixed integer nonlinear programming problems. This kind of problems have integer and continuous variables and they appear very frequently in process engineering problems. The objective of this work is to analyze the performance of the method when the coordinate searches are interrupted in the context of the multistart strategy. From the numerical experiments, we observed a reduction on the number of function evaluations and on the CPU time.
Resumo:
In this work we propose and analyze nonlinear elliptical models for longitudinal data, which represent an alternative to gaussian models in the cases of heavy tails, for instance. The elliptical distributions may help to control the influence of the observations in the parameter estimates by naturally attributing different weights for each case. We consider random effects to introduce the within-group correlation and work with the marginal model without requiring numerical integration. An iterative algorithm to obtain maximum likelihood estimates for the parameters is presented, as well as diagnostic results based on residual distances and local influence [Cook, D., 1986. Assessment of local influence. journal of the Royal Statistical Society - Series B 48 (2), 133-169; Cook D., 1987. Influence assessment. journal of Applied Statistics 14 (2),117-131; Escobar, L.A., Meeker, W.Q., 1992, Assessing influence in regression analysis with censored data, Biometrics 48, 507-528]. As numerical illustration, we apply the obtained results to a kinetics longitudinal data set presented in [Vonesh, E.F., Carter, R.L., 1992. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1-17], which was analyzed under the assumption of normality. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia
Resumo:
This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.
The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.
The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.
The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.