961 resultados para Mitotic checkpoint
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Two wild diploid (2n = 20 chromosomes) and self-pollinating Arachis species, Arachis Pintoi Krapov and W.C.Gregory and A. villosulicarpa Hoehne were submmited to C-band technique to karyotype analyses. Root tips were employed in the analyses. Morphometric data chose that chromosome lengths varied from 3.12 in A. villosulicarpa to 1.45 in A. Pintoi. Karyotype formula obtained was 10sm to A. Pintoi and 9sm + 1m to A. villosulicarpa. There was a predominance of pericentromeric C-band in all mitotic metaphasic chromosomes in both species. Besides C-band values, both species still did not differ in respect to chromosome absolute and relative lengths, centromeric index, symmetry index and total karyotype haploid length. C-band and morphometric data did not show strong or significant differences which could separate these two species of peanut which belong to evolutive different sections.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O efeito de duas concentrações de cafeína (1500 e 2500 mg/ml) sobre o índice mitótico em Drosophila prosaltans foi analisado em células de gânglios cerebrais de larvas. Embora as diferenças detectadas entre células controle e tratadas não sejam significativas, as porcentagens obtidas poderiam ser sugestivas de algum efeito da cafeína ampliando a duração do processo de divisão celular
Resumo:
Within a total of 50 analyzed specimens a male individual of Trichomycterus davisi has been recorded with 81 chromosomes including 60 metacentric, 18 submetacentric and three subtelocentric chromosomes. When compared with diploid individuals (2n = 54) and the morphological standard of chromosomes, this male is a triploid with 3 = 81 chromosomes. Since staining with silver nitrate indicates three active nucleolar organizer regions (NORs), the three NOR- bearing chromosomes in this individual are genetically active. Analysis of the synaptonemal complex (SC) by electronic microscopy shows that there is an incomplete pairing of the third set of chromosomes in the triploid individual.
Resumo:
To investigate the expression of a marker of cell proliferation (PCNA/Cyclin) and its putative relationship with histological grading, mitotic index and estrogen receptor immunoreactivity, we studied twenty-seven cases of invasive breast carcinoma in formalin-fixed, paraffin-embedded tissue sections. The PCNA and estrogen receptor were detected by the PC10 and H222 monoclonal antibodies respectively, using an avidin-biotin-pernxidase method. The median value of PCNA index was 20.9% with a range from 1.4 to 84.2%. We did not find any significant relationship between PCNA index anti the histological grading, mitotic index and estrogen receptor immunoreactivity. We conclude that PCNA detected by the monoclonal antibody PC10 in formalin-fixed material looks at present unrealiable as a proliferation marker in breast carcinoma.
Resumo:
Two wild diploid (2n = 20 chromosomes) and self-pollinating Arachis species, Arachis Pintoi Krapov and W.C. Gregory and A. villosulicarpa Hoehne were submmited to C-band technique to karyotype analyses. Root tips were employed in the analyses. Morphometric data chose that chromosome lengths varied from 3.12 in A. villosulicarpa to 1.45 in A. Pintoi. Karyotype formula obtained was 10sm to A. Pintoi and 9sm + 1m to A. villosulicarpa. There was a predominance of pericentromeric C-band in all mitotic metaphasic chromosomes in both species. Besides C-band values, both species still did not differ in respect to chromosome absolute and relative lengths, centromeric index, symmetry index and total karyotype haploid length. C-band and morphometric data did not show strong or significant differences which could separate these two species of peanut which belong to evolutive different sections.
Resumo:
As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individually analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/ carcinogenic genomic effects of low-dose X-rays. ©FUNPEC-RP.
Resumo:
Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sphingosine kinases (SK) catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P), thereby promoting oncogenic processes. Breast (MDA-MB-231), lung (NCI-H358), and colon (HCT 116) carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC) and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.
Resumo:
The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.