896 resultados para Mining-Induced Stress
Resumo:
This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.
Resumo:
Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.
Resumo:
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.
Resumo:
BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.
Resumo:
In recent times, the demand for the storage of electrical energy has grown rapidly for both static applications and the portable electronics enforcing the substantial improvement in battery systems, and Li-ion batteries have been proven to have maximum energy storage density in all rechargeable batteries. However, major breakthroughs are required to consummate the requirement of higher energy density with lower cost to penetrate new markets. Graphite anode having limited capacity has become a bottle neck in the process of developing next generation batteries and can be replaced by higher capacity metals such as Silicon. In the present study we are focusing on the mechanical behavior of the Si-thin film anode under various operating conditions. A numerical model is developed to simulate the intercalation induced stress and the failure mechanism of the complex anode structure. Effect of the various physical phenomena such as diffusion induced stress, plasticity and the crack propagation are investigated to predict better performance parameters for improved design.
Resumo:
Chronic stress is associated with hippocampal atrophy and cognitive dysfunction. This study investigates how long-lasting administration of corticosterone as a mimic of experimentally induced stress affects psychometric performance and the expression of the phosphatidylethanolamine binding protein (PEBP1) in the adult hippocampus of one-year-old male rats. Psychometric investigations were conducted in rats before and after corticosterone treatment using a holeboard test system. Rats were randomly attributed to 2 groups (n = 7) for daily subcutaneous injection of either 26.8 mg/kg body weight corticosterone or sesame oil (vehicle control). Treatment was continued for 60 days, followed by cognitive retesting in the holeboard system. For protein analysis, the hippocampal proteome was separated by 2D electrophoresis (2DE) followed by image processing, statistical analysis, protein identification via peptide mass fingerprinting and gel matching and subsequent functional network mapping and molecular pathway analysis. Differential expression of PEBP1 was additionally quantified by Western blot analysis. Results show that chronic corticosterone significantly decreased rat hippocampal PEBP1 expression and induced a working and reference memory dysfunction. From this, we derive the preliminary hypothesis that PEBP1 may be a novel molecular mediator influencing cognitive integrity during chronic corticosterone exposure in rat hippocampus.
Resumo:
Objective. Loud noises in neonatal intensive care units (NICUs) may impede growth and development for extremely low birthweight (ELBW, < 1000 grams) newborns. The objective of this study was to measure the association between NICU sound levels and ELBW neonates' arterial blood pressure to determine whether these newborns experience noise-induced stress. ^ Methods. Noise and arterial blood pressure recordings were collected for 9 ELBW neonates during the first week of life. Sound levels were measured inside the incubator, and each subject's arterial blood pressures were simultaneously recorded for 15 minutes (at 1 sec intervals). Time series cross-correlation functions were calculated for NICU noise and mean arterial blood pressure (MABP) recordings for each subject. The grand mean noise-MABP cross-correlation was calculated for all subjects and for lower and higher birthweight groups for comparison. ^ Results. The grand mean noise-MABP cross-correlation for all subjects was mostly negative (through 300 sec lag time) and nearly reached significance at the 95% level at 111 sec lag (mean r = -0.062). Lower birthweight newborns (454-709 g) experienced significant decreases in blood pressure with increasing NICU noise after 145 sec lag (peak r = -0.074). Higher birthweight newborns had an immediate negative correlation with NICU sound levels (at 3 sec lag, r = -0.071), but arterial blood pressures increased to a positive correlation with noise levels at 197 sec lag (r = 0.075). ^ Conclusions. ELBW newborns' arterial blood pressure was influenced by NICU noise levels during the first week of life. Lower birthweight newborns may have experienced an orienting reflex to NICU sounds. Higher birthweight newborns experienced an immediate orienting reflex to increasing sound levels, but arterial blood pressure increased approximately 3 minutes after increases in noise levels. Increases in arterial blood pressure following increased NICU sound levels may result from a stress response to noise. ^
Resumo:
Lysosomal membrane stability, lipofuscin (LF), malondialdehyde (MDA), neutral lipid (NL) levels, as well as halogenated organic compounds (HOCs), Cr, Cd, Pb and Fe concentrations were analyzed in liver of black-legged kittiwake (BK), herring gull (HG), and northern fulmar (NF) chicks. There were significant species differences in the levels of NL, LF and lysosomal membrane stability. These parameters were not associated with the respective HOC concentrations. LF accumulation was associated with increasing Cr, Cd and Pb concentrations. HG presented the lowest lysosomal membrane stability and the highest. LF and NL levels, which indicated impaired lysosomes in HG compared to NF and BK. Lipid peroxidation was associated with HOC and Fe2+ levels. Specific HOCs showed positive and significant correlations with MDA levels in HG. The study indicates that contaminant exposure can affect lysosomal and lipid associated parameters in seabird chicks even at low exposure levels. These parameters may be suitable markers of contaminant induced stress in arctic seabirds.
Resumo:
The effects of medium term (32 d) hypercapnia on the immune response of Mytilus edulis were investigated in mussels exposed to acidified (using CO2) sea water (pH 7.7, 7.5 or 6.7; control: pH 7.8). Levels of phagocytosis increased significantly during the exposure period, suggesting an immune response induced by the experimental set-up. However, this induced stress response was suppressed when mussels were exposed to acidified sea water. Acidified sea water did not have any significant effects on other immuno-surveillance parameters measured (superoxide anion production, total and differential cell counts). These results suggest that ocean acidification may impact the physiological condition and functionality of the haemocytes and could have a significant effect on cellular signalling pathways, particularly those pathways that rely on specific concentrations of calcium, and so may be disrupted by calcium carbonate shell dissolution.
Resumo:
Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics.
Resumo:
The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.
Resumo:
A flexible method for fabricating shallow optical waveguides by using femtosecond laser writing of patterns on a metal coated glass substrate followed by ion-exchange is described. This overcomes the drawbacks of low index contrast and high induced stress in waveguides directly written using low-repetition rate ultrafast laser systems. When compared to conventional lithography, the technique is simpler and has advantages in terms of flexibility in the types of structures which can be fabricated.
Resumo:
A flexible method for fabricating shallow optical waveguides by using femtosecond laser writing of patterns on a metal coated glass substrate followed by ion-exchange is described. This overcomes the drawbacks of low index contrast and high induced stress in waveguides directly written using low-repetition rate ultrafast laser systems. When compared to conventional lithography, the technique is simpler and has advantages in terms of flexibility in the types of structures which can be fabricated.
Resumo:
Tensile, crack opening displacement (COD), blunt notch, and Charpy impact tests were used to investigate cleavage initiation in the intercritically reheated coarse-grained heat-affected zone (IC CG HAZ) of three steels. The steels were chosen to provide different distributions and morphologies of MA (high-carbon martensite with some retained austenite) particles within the IC CG HAZ structure. Observation of minimum impact toughness values for the IC CG HAZ was found to be associated with a particular microstructure containing a near-connected grain boundary network of blocky MA particles, the MA particles being significantly harder than the internal grain microstructure. The initiation mechanism for this structure was determined to be from a combination of an overlap of residual transformational induced stress fields, due to the formation of the MA particles, between two closely spaced particles and stress concentration effects resulting from debonding of the particles. © 1994 The Minerals, Metals and Materials Society, and ASM International.
Resumo:
The recent search for new sources of hydrocarbons has led to production from very severe environments which can contain considerable amounts of carbon dioxide, hydrogen sulphide, and chloride ions, combined with temperatures which can exceed 100°C. Oil and gas production from such wells requires highly corrosion-resistant materials. The traditional solution of using carbon steel with additional protection is generally inadequate in these very-aggressive environments. Duplex stainless steels (DSS) are attractive candidates because of their high strength, good general corrosion resistance, excellent resistance to chloride-induced stress corrosion cracking, and good weldability. Although duplex stainless steels have a very good reputation in both subsea and topsides pipework, it is recognized that the tolerance of these materials to variations in microstructure and chemical composition are still not fully understood. The object of this paper is to review the corrosion behaviour of duplex stainless steels in the petrochemical industry, with particular emphasis on microstructures and the effect of changes in chemical composition.