988 resultados para Millet silage
Resumo:
This paper considers the various complex changes that occur to nitrogen (N) containing compounds in forages through the processes of ensiling, rumen degradation and microbial synthesis, post-ruminal digestion and absorption and synthesis into milk protein. Particular emphasis is placed on reviewing recent data on the efficiency of utilisation of N-containing compounds in silages by rumen microbes, since low efficiency here is believed to be a major cause of large N losses to the environment on some silage-based diets. Data are reviewed which show that although rumen degradation of N compounds in silage is rapid and extensive, up to 10% of the soluble N can escape the rumen by being associated with the liquid phase. There is now firm evidence that the composition of the amino acids (AAs) absorbed is heavily dependent on the process of ensiling and that witting or use of certain silage additives conserve the initial amino acid profile of the forage. This provides an opportunity to manipulate the amino acid supply to better match demand thus potentially enhancing utilisation. This review confirms that utilisation of the N fractions in grass and legume silages in particular, is poor and the efficiency of microbial protein synthesis (EMPS) is consistently higher on maize silage-based diets. It is concluded that the way in which grass and legume silages in particular are produced and used in the future needs a radical rethink. New research needs to be aimed at enhancing the utilisation of N in the rumen through a better understanding of N/carbohydrate relationships and the ability of forages to supply degraded carbohydrate. Also more emphasis is needed on understanding of the potentially different role of the different N fractions that exist in silages. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Maize silage-based diets with three dietary crude protein (CP) supplements were offered to 96 finishing cattle of contrasting breed (Holstein Friesian (HF) v. Simmental x HF (SHF)) and gender (bull v. steer) housed in two types of feeding system (group fed v. individually fed). The three protein supplements differed either in CP or protein degradability (degradable (LUDP) v. rumen undegradable (HUDP)) and provided CP concentrations of 142 (Con), 175 (LUDP) and 179 (HUDP) g/kg dry matter (DM) respectively, with ratios of degradable to undegradable of 3.0, 1.4 and 0.9:1 for diets Con, LOP and HUDP respectively. DM intakes were marginally higher (P = 0. 102) for LOP when compared with Con and HOP Rates of daily live-weight gain (DLWG) were higher (P = 0.005) in LUDP and HOP when compared with Con. HF had higher DM intakes than SHF although this did not result in any improvement in HF DLWG. Bulls had significantly better DM intakes, DLWG and feed conversion efficiency than steers. Conformation scores were better in SHF than HF (P < 0.001) and fat scores lower in bulls than steers (p < 0.001). There was a number of first order interactions established between dietary treatment, breed, gender and housing system with respect to rates of gain and carcass fat scores.
Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition
Resumo:
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 X 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54:46 forage: concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6: n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.
Resumo:
Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The microbial fermentability, ruminal degradability and digestibility of 48 maize silages were determined using in vitro gas production (GP), in situ degradability and in vitro digestibility procedures. The silages were produced from forage maize harvested throughout the summer of 1998, and represent a wide range of physiological maturities. Large variations among samples were observed for all biological parameters, with the exception of in vitro digestibility and the asymptote of in vitro GP. The potential of near infrared reflectance spectroscopy (NIRS) to predict the biological parameters measured was determined by regression of the biological data against the respective spectral profile. NIRS demonstrated only a moderate ability (R-2 > 0.60-0.80) to predict in vitro digestibility, modelled kinetics of gas production (excluding the asymptote of gas production) and the modelled ruminally soluble dry matter (DM) fraction. Calibration statistics for remaining biological parameters were unacceptably poor (R-2 = 0.60). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.
Resumo:
Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.
Resumo:
Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.
Resumo:
This paper compares the volatile compound and fatty acid compositions of grilled beef from Aberdeen Angus and Holstein-Friesian steers slaughtered at 14 months, each breed fed from 6 months on either cereal-based concentrates or grass silage. Linoleic acid levels were higher in the muscle of concentrates-fed animals, which in the cooked meat resulted in increased levels of several compounds formed from linoleic acid decomposition. Levels of alpha-linolenic acid, and hence some volatile compounds derived from this fatty acid, were higher in the meat from the silage-fed steers. 1-Octen-3-ol, hexanal, 2-pentylfuran, trimethylamine, cis- and trans-2-octene and 4,5-dimethyl-2-pentyl-3-oxazoline were over 3 times higher in the steaks from the concentrates-fed steers, while grass-derived 1-phytene was present at much higher levels in the beef from the silage-fed steers. Only slight effects of breed were observed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Based on the potential benefits to human health there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 conjugated linoleic acid (CLA) in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg BW) fitted with rumen and duodenal cannulae were used in a 4 x 4 Latin square experiment with 21 d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 polyunsaturated fatty acids (PUFA) in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg DM of FO, LO or a mixture (1:1, w/w) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g DM/kg BW0.75/d. Oils had no effect (P = 0.52) on DM intake. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, while FO shifted rumen fermentation towards propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of ∆9,11, ∆11,13, and ∆13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in higher (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and lowered (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum responses to LFO were intermediate of FO and LO. However, LFO resulted in higher (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was higher (P < 0.001) for LO and LFO than FO, while biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally lower (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg DM altered the biohydrogenation of unsaturated fatty acids in the rumen causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.