982 resultados para Microstructure Characterization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to characterize the microstructure of the complex phase steel (CP). Using the conventional and colored metallographic analysis with 3% Nital etchant, sodium metabisulfite 10% and LePera. Techniques were applied in this work of optical microscopy, using, besides the lighting in bright field, dark field illumination of the reverse contrast in bright field illumination, the method of polarized light, which generates colorful contrast, providing a complementary identification phases present in the microstructure, and the system by differential interference contrast (DIC). The results obtained by metallography CP indicates that the steel has a microstructure composed of ferrite, retained austenite, bainite and martensite and precipitates arranged in a refined and complex morphology. Besides bright field illumination others' optical microscopy's techniques such as dark field illumination were applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of two compounds, calcium silicate and calcium zirconate was tested in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method. The wires were treated in an atmosphere of O-2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. It was found that the addition of calcium silicate or zirconate promoted higher transition temperatures, up to 116 K for BSCCO with 1wt.% CaSiO3. The critical current densities determined by transport and magnetization measurements were improved in comparison with the wires without any addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel porous silica matrix has been prepared from Pyrex glass, using hydrothermal treatment under saturated-steam condition. This process makes it possible to obtain, in one step, a silica support formed of a homogeneously distributed and interconnected macropore microstructure. The new matrix contains silanol groups that can be used in reactions of surface modification to provide a hybrid material and a selective macrofiltration membrane, and also it can improve chemical inertness. The porous matrix is noncrystalline as obtained and, after thermal treatment at temperatures higher than 950degreesC, exhibits an X-ray pattern characteristic of alpha-cristobalite and low volume contraction. The present samples were characterized by scanning electron microscopy, mercury intrusion porosimetry, nitrogen adsorption-desorption isotherms, infrared spectroscopy, X-ray powder diffractometry, atomic absorption, and high-resolution solid-state nuclear magnetic resonance. The results present a new way of producing a macroporous silica matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pechini's method has been successfully used to prepare Li-doped MgNb2O6(MN) at short time and low temperature. It consists in the preparation of metal citrate solution, which is polymerized at 250°C to form a high viscous resin. This resin was burned in a box type furnace at 400°C/2h and ground in a mortar. Successive steps of calcination up to 900°C were used to form a crystalline precursor. SEM, DTA and XRD were used to characterize the powders. MN precursor powders containing from 0.1 to 5.0 mol% of LiNbO3 additive was prepared aiming better dielectric properties and microstructural characteristics of the PMN prepared from columbite route. SEM analysis showed that particles increased by sintering, forming large agglomerates. The surface area is also substantially reduced with the increase in additive amount above 1.0 mol%. In XRD pattern of the precursor material with 5.0 mol% of additive was observed the LiNbO3 phase of trigonal structure. XRD data were used for Rietveld refinement and a decrease in microstrain and pronounced increase in crystallite size with the increase of LiNbO3 were observed. It is in agreement with the particle morphologies observed by SEM analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of two compounds, calcium silicate and calcium zirconate was tested, in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method, which were successfully tested previously in processing chips. The wires were treated in an atmosphere of O2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. As the results, transition temperatures were higher than the expected for this stage, ranged from 105K (BSCCO880) to 116K (+Si883). The critical current densities encountered in transport and magnetization measurements were improved in comparison with the wires without addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti-12Mo-3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti-6Al-4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti-12Mo-3Nb alloy heat-treated at 950 degrees C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 degrees C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two Zircaloy 4-Ta alloys (14 and 55 wt.% Ta) were produced by arc-melting. The alloys were hot-rolled at 900 degrees C and heat-treated under argon atmosphere for 100 h at 700 degrees C. The alloys were analyzed by scanning electron microscopy and X-ray diffractometry. The microstructure of both rolled and heat-treated alloys is constituted of (beta Zr,Ta)-II Ta-rich precipitates dispersed in a (alpha Zr) matrix. Corrosion tests performed in boiling concentrated H2SO4 solutions showed that the Zircaloy 4-Ta alloys are more corrosion resistant than Zircaloy 4 and that the corrosion resistance increases with increasing Ta content. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vinylphosphonic acid (VPA) was polymerized at 80 ºC by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 104 g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, 13C-NMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the 1H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit ist die Präparation und die ausführliche Charakterisierung epitaktischer Dünnschicht-Proben der Heusler Verbindung Ni2MnGa. Diese intermetallische Verbindung zeigt einen magnetischen Formgedächtnis-Effekt (MFG), der sowohl im Bezug auf mögliche Anwendungen, als auch im Kontext der Grundlagenforschung äußerst interessant ist. In Einkristallen nahe der Stöchiometrie Ni2MnGa wurden riesige magnetfeldinduzierte Dehnungen von bis zu 10 % nachgewiesen. Der zugrundeliegende Mechanismus basiert auf einer Umverteilung von kristallographischen Zwillings-Varianten, die eine tetragonale oder orthorhombische Symmetrie besitzen. Unter dem Einfluss des Magnetfeldes bewegen sich die Zwillingsgrenzen durch den Kristall, was eine makroskopische Formänderung mit sich bringt. Die somit erzeugten reversiblen Längenänderungen können mit hoher Frequenz geschaltet werden, was Ni2MnGa zu einem vielversprechenden Aktuatorwerkstoff macht. rnDa der Effekt auf einem intrinsischen Prozess beruht, eignen sich Bauteile aus MFG Legierungen zur Integration in Mikrosystemen (z.B. im Bereich der Mikrofluidik). rnrnBislang konnten große magnetfeldinduzierte Dehnungen nur für Einkristalle und Polykristalle mit hoher Porosität („foams") nachgewiesen werden. Um den Effekt für Anwendungen nutzbar zu machen, werden allerdings Konzepte zur Miniaturisierung benötigt. Eine Möglichkeit bieten epitaktische dünne Filme, die im Rahmen dieser Arbeit hergestellt und untersucht werden sollen. Im Fokus stehen dabei die Optimierung der Herstellungsparameter, sowie die Präparation von freitragenden Schichten. Zudem werden verschiedene Konzepte zur Herstellung freistehender Mikrostrukturen erprobt. Mittels Röntgendiffraktometrie konnte die komplizierte Kristallstruktur für verschiedene Wachstumsrichtungen verstanden und die genaue Verteilung der Zwillingsvarianten aufgedeckt werden. In Verbindung mit Mikroskopie-Methoden konnte so die Zwillingsstruktur auf verschiedenen Längenskalen geklärt werden. Die Ergebnisse erklären das Ausbleiben des MFG Effekts in den Proben mit (100) Orientierung. Andererseits wurde für Schichten mit (110) Wachstum eine vielversprechende Mikrostruktur entdeckt, die einen guten Ausgangspunkt für weitere Untersuchungen bietet.rnDurch die spezielle Geometrie der Proben war es möglich, Spektroskopie-Experimente in Transmission durchzuführen. Die Ergebnisse stellen den ersten experimentellen Nachweis der Änderungen in der elektronischen Struktur einer metallischen Verbindung während des martensitischen Phasenübergangs dar. Durch Messen des magnetischen Zirkulardichroismus in der Röntgenabsorption konnten quantitative Aussagen über die magnetischen Momente von Ni und Mn getroffen werden. Die Methode erlaubt überdies die Beiträge von Spin- und Bahn-Moment separat zu bestimmen. Durch winkelabhängige Messungen gelang es, die mikroskopische Ursache der magnetischen Anisotropie aufzuklären. Diese Ergebnisse tragen wesentlich zum Verständnis der komplexen magnetischen und strukturellen Eigenschaften von Ni2MnGa bei.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.