221 resultados para Microcirculation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hepatic microcirculation is believed to cause variable cellular oxygenation within the organ. In this study a marker of cellular hypoxia was used to demonstrate liver oxygen tension gradients in vivo. Covalent binding of misonidazole adducts to cellular macromolecules is enhanced by hypoxia. Autoradiographs of liver from mice treated with radiolabeled misonidazole demonstrated enhanced binding of adducts within hepatocytes surrounding hepatic veins. Livers from both hypoxic and normal mice had characteristic autoradiographic grain patterns reflecting regional oxygen tension variation in vivo. Differential binding of misonidazole adducts formed in hypoxic cells could have an application in studies of liver physiology and biochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and functional change in the microcirculation in type 1 diabetes mellitus predicts future end-organ damage and macrovascular events. We explored the utility of novel signal processing techniques to detect and track change in ocular hemodynamics in patients with this disease. 24 patients with uncomplicated type 1 diabetes mellitus, and 18 age-and-sex matched control subjects were studied. Doppler ultrasound was used to interrogate the carotid and ophthalmic arteries and digital photography to image the retinal vasculature. Frequency analysis algorithms were applied to quantify velocity waveform structure and retinal photographic data at baseline and following inhalation of 100% oxygen. Frequency data was compared between groups. No significant differences were found in the resistive index between groups at baseline or following inhaled oxygen. Frequency analysis of the Doppler flow velocity waveforms identified significant differences in bands 3-7 between patients and controls in data captured from the ophthalmic artery (p<0.01 for each band). In response to inhaled oxygen, changes in the frequency band amplitudes were significantly greater in control subjects compared with patients (p<0.05). Only control subjects demonstrated a positive correlation (R=0.61) between change in retinal vessel diameter and frequency band amplitudes derived from ophthalmic artery waveform data. The use of multimodal signal processing techniques applied to Doppler flow velocity waveforms and retinal photographic data identified preclinical change in the ocular microcirculation in patients with uncomplicated diabetes mellitus. An impaired autoregulatory response of the retinal microvasculature may contribute to the future development of retinopathy in such patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION:Cerebral small-vessel disease has been implicated in the development of Alzheimer’sdisease (AD). The retinal microvasculature enables non-invasive visualization andevaluation of the systemic microcirculation. We evaluated retinal microvascular parametersin a case-control study of AD patients and cognitively-normal controls. 

METHODS:Retinal images were computationally analyzed and quantitative retinal parameters (caliber,fractal dimension, tortuosity, and bifurcation) measured. Regression models were used tocompute odds ratios (OR) and confidence intervals (CI) for AD with adjustment forconfounders. 

RESULTS:Retinal images were available in 213 AD participants and 294 cognitively-normal controls.Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77[CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97])were more likely to have AD following appropriate adjustment. 
DISCUSSION:Patients with AD have a sparser retinal microvascular network and retinal microvascularvariation may represent similar pathophysiological events within the cerebralmicrovasculature of patients with AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months' streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Although L-type Ca2+ channels are known to play a key role in the myogenic reactivity of retinal arterial vessels, the involvement of other types of voltage-gated Ca2+ channels in this process remains unknown. In the present study we have investigated the contribution of T-type Ca2+ channels to myogenic signalling in arterioles of the rat retinal microcirculation.

Methods: Confocal immunolabelling of wholemount preparations was used to investigate the localisation of CaV3.1-3 channels in retinal arteriolar smooth muscle cells. T-type currents and the contribution of T-type channels to myogenic signalling were assessed by whole-cell patch-clamp recording and pressure myography of isolated retinal arteriole segments.

Results: Strong immunolabelling for CaV3.1 was observed on the plasma membrane of retinal arteriolar smooth muscle cells. In contrast, no expression of CaV3.2 or CaV3.3 could be detected in retinal arterioles, although these channels were present on glial cell end feet surrounding the vessels and retinal ganglion cells, respectively. TTA-A2 sensitive T-type currents were recorded in retinal arteriolar myocytes with biophysical properties distinct from those of the L-type currents present in these cells. Inhibition of T-type channels using TTA-A2 or ML-218 dilated isolated, myogenically active, retinal arterioles.

Conclusions: CaV3.1 T-type Ca2+ channels are functionally expressed on arteriolar smooth muscle cells of retinal arterioles and play an important role in myogenic signalling in these vessels. The work has important implications concerning our understanding of the mechanisms controlling blood flow autoregulation in the retina and its disruption during ocular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Chronic kidney disease (CKD) and hypertension are global public health problems associated with considerable morbidity, premature mortality and attendant healthcare costs. Previous studies have highlighted that non-invasive examination of the retinal microcirculation can detect microvascular pathology that is associated with systemic disorders of the circulatory system such as hypertension. We examined the associations between retinal vessel caliber (RVC) and fractal dimension (DF), with both hypertension and CKD in elderly Irish nuns.

Methods: Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study (INES) were assessed from digital photographs with a standardized protocol using computer-assisted software. Multivariate regression analyses were used to assess associations with hypertension and CKD, with adjustment for age, body mass index (BMI), refraction, fellow eye RVC, smoking, alcohol consumption, ischemic heart disease (IHD), cerebrovascular accident (CVA), diabetes and medication use.

Results: In total, 1122 (91%) participants (mean age: 76.3 [range: 56-100] years) had gradable retinal images of sufficient quality for blood vessel assessment. Hypertension was significantly associated with a narrower central retinal arteriolar equivalent (CRAE) in a fully adjusted analysis (P = 0.002; effect size= -2.16 μm; 95% confidence intervals [CI]: -3.51, -0.81 μm). No significant associations between other retinal vascular parameters and hypertension or between any retinal vascular parameters and CKD were found.

Conclusions: Individuals with hypertension have significantly narrower retinal arterioles which may afford an earlier opportunity for tailored prevention and treatment options to optimize the structure and function of the microvasculature, providing additional clinical utility. No significant associations between retinal vascular parameters and CKD were detected.