609 resultados para Methadone hydrochloride.
Resumo:
The inhibition of the corrosion of mild steel in 2M hydrochloric acid solutions by Pyridoxol hydrochloride (PXO) has been studied using weight loss and hydrogen evolution techniques. The inhibitor (PXO) exhibited highest inhibition efficiency of 71.93% at the highest inhibitor concentration of 1.0 x 10-2M investigated and a temperature of 303K from weight loss result. Also, inhibition was found to increase with increasing concentration of the inhibitor and decreasing temperature. A first order type of mechanism has been deduced from the kinetic treatment of the weight loss results and the process of inhibition attributed to physical adsorption. The results obtained from the two techniques show that pyridoxol hydrochloride could serve as an effective inhibitor of the corrosion of mild steel in HCl acid solution. The compound obeys the Langmuir adsorption isotherm equation.
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
Two simple, rapid and accurate methods for the determination of bupropion hydrochloride (BUP) in pure and in pharmaceutical preparations are described. Both methods are based on the measurement of the chloride of its hydrochloride. In the titrimetric method, the chloride content of bupropion hydrochloride is determined by titrating with mercury(II)nitrate using diphenylcarbazone-bromophenol blue as indicator. Titrimetric method is applicable over a range 2-20 mg of BUP and the reaction stoichiometry is found to be 2:1 (BUP: Hg(NO3)2). The spectrophotometric method involves the addition of a measured excess of mercury(II) nitrate reagent in formate buffer to the drug, and after ensuring the reaction had gone to completion, the unreacted mercury(II) is treated with a fixed amount of diphenylcarbazone, and absorbance measured at 515 nm. The absorbance is found to decrease linearly with increasing concentration of BUP and the calibration curve is linear over 1.0-15.0 µg mL-1 BUP. The proposed methods were successfully applied to the determination of BUP in commercially available dosage forms with good accuracy and precision, and without detectable interference by excipients. The accuracy was further ascertained by placebo blank and synthetic mixture analyses and also by recovery experiments via standard-addition procedure.
Resumo:
A new spectrophotometric method is proposed for the assay of ranitidine hydrochloride (RNH) in bulk drug and in its dosage forms using ceric ammonium sulphate (CAS) and two dyes, malachite (MAG) green and crystal violet (CV) as reagents. The method involves the addition of a known excess of ceric ammonium sulphate to ranitidine hydrochloride in acid medium, followed by the determination of unreacted CAS by reacting with a fixed amount of malachite green or crystal violet and measuring the absorbance at 615 or 582 nm respectively against the reagent blank. The Beer's law is obeyed in the concentration range of 0.4-8.0 µg/ ml of ranitidine hydrochloride (RNH) for RNH-MAG system and 0.2-1.6µg/ml of ranitidine hydrochloride for RNH-CV system. The molar Absorptivity, Sandell's sensitivity for each system were calculated. The method has been successfully applied to the determination of ranitidine hydrochloride in pure and dosage forms.
Resumo:
The combination of two low-cost classical procedures based on titrimetric techniques is presented for the determination of pyridoxine hydrochloride in pharmaceuticals samples. Initially some experiments were carried out aiming to determine both pKa1 and pKa2 values, being those compared to values of literature and theoretical procedures. Commercial samples containing pyridoxine hydrochloride were electrochemically analysed by exploiting their acid-base and precipitation reactions. Potentiometric titrations accomplished the reaction between the ionizable hydrogens present in pyridoxine hydrochloride, being NaOH used as titrant; while the conductimetric method was based on the chemical precipitation between the chloride of pyridoxine hydrochloride molecule and Ag+ ions from de silver nitrate, changing the conductivity of the solution. Both methods were applied to the same commercial samples leading to concordant results when compared by statistical tests (95 and 98% confidence levels). Recoveries ranging from 99.0 to 108.1% were observed, showing no significant interference on the results.
Resumo:
In this paper the conductometric titration of propranolol hydrochloride in pharmaceutical formulations using silver nitrate as titrant is proposed. The method was based on the formation of an insoluble salt (AgCl(s)) between the chloride of propranolol hydrochloride molecule and Ag(I) ions of the titrant AgNO3. The effect of the PROP-AgNO3 concentrations and the interval of time between the successive additions of the titrant on the shape of the titration curve were studied. The obtained recoveries for four samples ranged from 96.8 to 105%. The proposed method was successfully applied in the determination of propranolol hydrochloride in several pharmaceutical formulations, with results in close agreement at a 95 % confidence level with those obtained using official spectrophotometric method.
Resumo:
β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.
Resumo:
The title reaction was undertaken to establish the interaction between amantadine and molybdate at physiological pH. Identical FTIR spectra, TG-DTA curves and CHN data of the complexes formed from three solutions at pH 1.5, 7.4 and 8.0 indicate that the same complex was formed at all the three pHs. The FTIR spectrum shows shift in peaks corresponding to primary amino group of the drug due to coordination to molybdate. An octahedral geometry is assigned to the complex. The kinetics of the complexation has been studied at low concentrations of the reactants using UV-visible spectrophotometry. At pH 7.4, the initial rate varies linearly with [molybdate]. A plot of initial rate versus [drug] is linear passing through origin. These results indicate that the drug and molybdate react at pH 7.4 even at low concentrations. At pH 1.5, the rate increases linearly with increase in [drug] but decreases with [molybdate]. The effect of pH and ionic strength on the rate of the reaction has also been studied. A suitable mechanism has been proposed for the reaction. Reaction between the drug and molybdate even at low concentrations and the fact that the amino group of amantadine required to be free for its function as antiviral, is bound to molybdate in the complex suggests that simultaneous administration of the drug and molybdate supplements should be avoided.
Resumo:
A differential pulse voltammetric sensor for the determination of tamsulosin hydrochloride (TAM) using multiwalled carbon nanotubes (MWNTs)–Nafion-modified glassy carbon electrode (GCE) has been developed. MWNTs were dispersed in water with the help of Nafion and were used to modify the surface of GCE via solvent evaporation. At MWNT-modified electrode, TAM gave a well-defined oxidation peak at a potential of 1084 mV in 0.1 M acetate buffer solution of pH 5. Compared to the bare electrode, the peak current of TAM showed a marked increase and the peak potential showed a negative deviation. The determination conditions, such as the amount of MWNT–Nafion suspension, pH of the supporting electrolyte and scan rate, were optimised. Under optimum conditions, the oxidation peak current was proportional to the concentration of TAM in the range 1 × 1023 M–3 × 1027 M with a detection limit of 9.8 × 1028 M. The developed sensor showed good stability, selectivity and was successfully used for the determination of TAM in pharmaceutical formulations and urine samples
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbarnyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 mu m ODS (C-18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min(-1) and the column temperature was maintained at 30 degrees C Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32 +/- 1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15 +/- 0.1 cm(2). The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1 % v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 mu g ml(-1). The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) < 12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <=-5.60 and <=-8.00, respectively. Using this assay, it was found that GL-HCI permeates through human skin with a flux 1.497 +/- 0.42 mu g cm(-2) h(-1), a permeability coefficient of 5.66 +/- 1.6 x 10(-6) cm h(-1) and with a lag time of 10.9 +/- 4.6 h. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This is the second in a short series of articles that focus on what GPs should consider when monitoring and prescribing specialist‐initiated palliative‐care drugs. Here, the authors summarise the key issues around the use of methadone for pain management.
Resumo:
Layer-by-layer (LBL) films of nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) have been prepared, whose surface charge has been evaluated using surface potential measurements. From adsorption kinetics results, we obtained the immersion time of similar to 40 s, which was used to assemble layers of NiTsPc. The effect of gold (Au) and aluminum (Al) electrodes on the charge behavior was examined. We found that the surface potential (i.e. surface charge) was inverted each time a layer of PAH was alternated with another of NiTsPc molecules for the two types of electrodes, which was attributed to charge overcompensation between positive charges of PAH molecules, and negative charges from NiTsPc molecules. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mebendazole hydrochloride [(5-benzoyl-1H-benzimidazole-2-yl)-carbamic acid methyl ester hydrochloride, MBZ.HCl], a new stable salt of mebendazole (MBZ), has been synthesized and characterized. It can easily be obtained from recrystallization of forms A, B, or C of MBZ in diverse solvents with the addition of hydrochloric acid solution. Crystallographic data reveals that the particular conformation adopted by the carbamic group contributes to the stability of the network. The crystal packing is stabilized by the presence of three N-H...Cl intermolecular interactions that form chains along the b axis. The XRD analyses of the three crystalline habits found in the crystallization process (square-based pyramids, pseudohexagonal plates, and prismatic) show equivalent diffraction patterns. The vibrational behavior is consistent with crystal structure. The most important functional groups show shifts to lower or higher frequencies in relation to the MBZ polymorphs. The thermal study on MBZ center dot HCI indicates that the compound is stable up to 160 degrees C approximately. Decomposition occurs in four steps. In the first step the HCl group is eliminated, and after that the remaining MBZ polymorph A decomposes in three steps, as happens with polymorphs B and C. (C) 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:542-552, 2008.
Resumo:
Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of promethazine hydrochloride was made on highly boron-doped diamond electrodes. Cyclic voltammetry experiments showed that the oxidation mechanisms involved the formation of an adsorbed product that is more readily oxidized, producing a new peak with lower potential values whose intensity can be increased by applying the accumulation potential for given times. The parameters were optimized and the highest current intensities were obtained by applying +0.78 V for 30 seconds. The square-wave adsorptive voltammetry results obtained in BR buffer showed two well-defined peaks, dependent on the pH and on the voltammetric parameters. The best responses were obtained at pH 4.0, frequency of 50 s(-1), step of 2 mV, and amplitude of 50 mV. Under these conditions, linear responses were obtained for concentrations from 5.96 x 10(-7) to 4.76 x 10(-6) mol L-1, and calculated detection limits of 2.66 x 10(-8) mol L-1 (8.51 mu g L-1) for peak 1 and of 4.61 x 10(-8) mol L-1 (14.77 mu g L-1) for peak 2. The precision and accuracy were evaluated by repeatability and reproducibility experiments, which yielded values of less than 5.00% for both voltammetric peaks. ne applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples. All results obtained were compared to recommended procedure by British Pharmacopeia. The voltammetric results indicate that the proposed procedure is stable and sensitive, with good reproducibility even when the accumulation steps involve short times. It is therefore very suitable for the development of the electroanalytical procedure, providing adequate sensitivity and a reliable method.