123 resultados para Meteorites.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.

Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.

The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.

By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.

Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller and Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth [1]. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin [2]. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission [3]. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.

Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gas-phase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.

From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.

In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies were conducted with the goals of 1) determining the origin of Pt- group element (PGE) alloys and associated mineral assemblages in refractory inclusions from meteorites and 2) developing a new ultrasensitive method for the in situ chemical and isotopic analysis of PGE. A general review of the geochemistry and cosmochemistry of the PGE is given, and specific research contributions are presented within the context of this broad framework.

An important step toward understanding the cosmochemistry of the PGE is the determination of the origin of POE-rich metallic phases (most commonly εRu-Fe) that are found in Ca, AJ-rich refractory inclusions (CAI) in C3V meteorites. These metals occur along with γNi-Fe metals, Ni-Fe sulfides and Fe oxides in multiphase opaque assemblages. Laboratory experiments were used to show that the mineral assemblages and textures observed in opaque assemblages could be produced by sulfidation and oxidation of once homogeneous Ni-Fe-PGE metals. Phase equilibria, partitioning and diffusion kinetics were studied in the Ni-Fe-Ru system in order to quantify the conditions of opaque assemblage formation. Phase boundaries and tie lines in the Ni-Fe-Ru system were determined at 1273, 1073 and 873K using an experimental technique that allowed the investigation of a large portion of the Ni-Fe-Ru system with a single experiment at each temperature by establishing a concentration gradient within which local equilibrium between coexisting phases was maintained. A wide miscibility gap was found to be present at each temperature, separating a hexagonal close-packed εRu-Fe phase from a face-centered cubic γNi-Fe phase. Phase equilibria determined here for the Ni-Fe-Ru system, and phase equilibria from the literature for the Ni-Fe-S and Ni-Fe-O systems, were compared with analyses of minerals from opaque assemblages to estimate the temperature and chemical conditions of opaque assemblage formation. It was determined that opaque assemblages equilibrated at a temperature of ~770K, a sulfur fugacity 10 times higher than an equilibrium solar gas, and an oxygen fugacity 106 times higher than an equilibrium solar gas.

Diffusion rates between -γNi-Fe and εRu-Fe metal play a critical role in determining the time (with respect to CAI petrogenesis) and duration of the opaque assemblage equilibration process. The diffusion coefficient for Ru in Ni (DRuNi) was determined as an analog for the Ni-Fe-Ru system by the thin-film diffusion method in the temperature range of 1073 to 1673K and is given by the expression:

DRuNi (cm2 sec-1) = 5.0(±0.7) x 10-3 exp(-2.3(±0.1) x 1012 erg mole-1/RT) where R is the gas constant and T is the temperature in K. Based on the rates of dissolution and exsolution of metallic phases in the Ni-Fe-Ru system it is suggested that opaque assemblages equilibrated after the melting and crystallization of host CAI during a metamorphic event of ≥ 103 years duration. It is inferred that opaque assemblages originated as immiscible metallic liquid droplets in the CAI silicate liquid. The bulk compositions of PGE in these precursor alloys reflects an early stage of condensation from the solar nebula and the partitioning of V between the precursor alloys and CAI silicate liquid reflects the reducing nebular conditions under which CAI were melted. The individual mineral phases now observed in opaque assemblages do not preserve an independent history prior to CAI melting and crystallization, but instead provide important information on the post-accretionary history of C3V meteorites and allow the quantification of the temperature, sulfur fugacity and oxygen fugacity of cooling planetary environments. This contrasts with previous models that called upon the formation of opaque assemblages by aggregation of phases that formed independently under highly variable conditions in the solar nebula prior to the crystallization of CAI.

Analytical studies were carried out on PGE-rich phases from meteorites and the products of synthetic experiments using traditional electron microprobe x-ray analytical techniques. The concentrations of PGE in common minerals from meteorites and terrestrial rocks are far below the ~100 ppm detection limit of the electron microprobe. This has limited the scope of analytical studies to the very few cases where PGE are unusually enriched. To study the distribution of PGE in common minerals will require an in situ analytical technique with much lower detection limits than any methods currently in use. To overcome this limitation, resonance ionization of sputtered atoms was investigated for use as an ultrasensitive in situ analytical technique for the analysis of PGE. The mass spectrometric analysis of Os and Re was investigated using a pulsed primary Ar+ ion beam to provide sputtered atoms for resonance ionization mass spectrometry. An ionization scheme for Os that utilizes three resonant energy levels (including an autoionizing energy level) was investigated and found to have superior sensitivity and selectivity compared to nonresonant and one and two energy level resonant ionization schemes. An elemental selectivity for Os over Re of ≥ 103 was demonstrated. It was found that detuning the ionizing laser from the autoionizing energy level to an arbitrary region in the ionization continuum resulted in a five-fold decrease in signal intensity and a ten-fold decrease in elemental selectivity. Osmium concentrations in synthetic metals and iron meteorites were measured to demonstrate the analytical capabilities of the technique. A linear correlation between Os+ signal intensity and the known Os concentration was observed over a range of nearly 104 in Os concentration with an accuracy of ~ ±10%, a millimum detection limit of 7 parts per billion atomic, and a useful yield of 1%. Resonance ionization of sputtered atoms samples the dominant neutral-fraction of sputtered atoms and utilizes multiphoton resonance ionization to achieve high sensitivity and to eliminate atomic and molecular interferences. Matrix effects should be small compared to secondary ion mass spectrometry because ionization occurs in the gas phase and is largely independent of the physical properties of the matrix material. Resonance ionization of sputtered atoms can be applied to in situ chemical analysis of most high ionization potential elements (including all of the PGE) in a wide range of natural and synthetic materials. The high useful yield and elemental selectivity of this method should eventually allow the in situ measurement of Os isotope ratios in some natural samples and in sample extracts enriched in PGE by fire assay fusion.

Phase equilibria and diffusion experiments have provided the basis for a reinterpretation of the origin of opaque assemblages in CAI and have yielded quantitative information on conditions in the primitive solar nebula and cooling planetary environments. Development of the method of resonance ionization of sputtered atoms for the analysis of Os has shown that this technique has wide applications in geochemistry and will for the first time allow in situ studies of the distribution of PGE at the low concentration levels at which they occur in common minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese National Antarctic Research Expedition (CHTNARE) has collected 4480 meteorite specimens in the Grove Mountains, East Antarctica, from 1998 to 2003. According to the location characteristics and the diversity of the classification, the paper concludes that the Grove Mountains is another important meteorite concentration area in the Antarctica. The Concentration mechanisms at the site could be related to the last glacier activity and katabatic wind. An empirical model was proposed: 1) Probably during the Last Glacial Maximum, ice flow overrided the Gale Escarpment range in the area. Formerly concentrated meteorites were carried by the new glacier and stayed in the terminal moraine when the glacier retreated. 2) Blown by strong katabatic wind, Newly exposed meteorites on the ablation zone were scattered on the blue ice at the lee side of the Gale escarpment. Some of them would be buried when they were moved further onto the firn snow zone. Many floating meteorites stopped and mustered at the fringe of the moraine. The chemical-petrographic of 31 meteorites were assigned based on electron probe microanalyses, petrography and mineralogy, including 1 martian lherzolitic shergottite, 1 eucrite, 1 extreme fine grain octahedron iron meteorite, and 28 ordinary chondrites (the chemical groups: 7 H-group, 13 L-group, 6 LL-group, 2 L/LL group; the petrographic types: 6 unequilibrated type 3 and 22 equilibrated type 4-6). GRV99028 meteorite has the komatiite-like spinifex texture consisting of acicular olivine crystals and some hornblende-family minerals in the interstitial region. Possibly it has crystallized from a supercooled, impact-generated, ultramafic melt of the host chondrite, then experienced the retrogressive metamorphism. Four typical chondrule textures were studied: porphyritic texture, radiative texture, barred texture and glass texture. The minerals are characteristically enriched in MgO content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

随着我国南极陨石的大量回收,对陨石的研究也越来越深入。本文主要对我国部分南极陨石和沙漠陨石开展了三方面的工作:(1)我国部分南极陨石的分类;(2)陨石中宇宙成因核素10Be和26Al的化学分离、纯化实验;(3)我国部分南极陨石和沙漠陨石的全岩化学组成分析和宇宙成因核素10Be和26Al的初步研究。 1、我国部分南极陨石的分类研究 通过对我国19次南极科考队回收的4448块陨石中24块南极普通球粒陨石的矿物、岩石分析,将这24块陨石化学-岩石类型进行了划分,分别为1个H3型(GRV 021603)、2个H4型(GRV 020200和GRV 021493)、4个H5型(GRV 020048、GRV 020078、GRV 020129和GRV 020236)、2个H6型(GRV 020075和GRV 020226)、1个L4型(GRV 021563)、8个L5型(GRV 020047、GRV 020283、GRV 020297、GRV 021547、GRV 021547、GRV 021581、GRV 021615和GRV 023771)、5个L6型(GRV 020103、GRV 020155、GRV 021505、GRV 021711和GRV 022171)、1个LL4型(GRV 020029)和1个LL6型(GRV 021496)。在此基础上,将我国的南极陨石和美国的南极陨石进行了类型和质量分布模型的对比。结果表明,我国南极陨石比美国南极陨石具有相对高的L群丰度;我国的南极陨石质量分布模型与美国南极陨石一致。 2、陨石中宇宙成因核素10Be和26Al的化学分离、纯化实验 在前人关于陨石中宇宙成因核素10Be和26Al的分离方法基础上,通过多次模拟样品的分离实验,成功地将陨石中Be和Al进行了分离、纯化。并且进一步改善了前人的分离方法,将Be的淋洗液由原来的120ml减少为90ml。在此基础上,用空白样品和吉林陨石的硅酸盐样品对整个化学分离实验进行了检验,并将所获得的BeO和Al2O3粉末用加速器质谱(AMS)进行了10Be和26Al的测试。根据所测定的10Be和26Al数据,计算得到吉林陨石的暴露年龄为0.52Ma,这一结果与前人所获得的吉林陨石第二阶段的暴露年龄0.4Ma接近。这一结果再次证明了陨石中宇宙成因核素10Be和26Al的分离流程是成功的,同时也说明本次所测的吉林陨石样品为吉林陨石第二阶段暴露辐射的样品。 3、我国部分南极陨石和沙漠陨石的全岩化学组成分析以及宇宙成因核素10Be和26Al的初步研究 对我国13块南极陨石和3块沙漠陨石进行了全岩化学成分的分析,其结果进一步证明了这些陨石由岩石、矿物分析所划分的类型的正确性。在这些陨石类型和全岩分析的基础上,对它们进行了宇宙成因核素10Be和26Al的初步分析。得到其中4块南极陨石和2块沙漠陨石的暴露年龄和居地年龄,这些陨石暴露年龄的范围为2.09-3.05Ma,居地年龄为0-0.23Ma。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

陨石分类是一项基础性的工作,是开展深入研究的前提。磁化率(χ)的测量提供了一种快速简单、无损的陨石分类方法,国外已有一些学者开始对陨石的磁性分类开展了研究,但国内尚无这方面研究的报导。本文主要对从南极格罗夫山回收的陨石开展了磁性分类的初步研究,论文主要工作包括以下几个方面: 1) 进行了磁化率测量模拟实验:由于陨石样品具有不规则和大小不等的形状,通过对模拟样品测量,了解上述几何因素对磁化率测量精度和准确性的影响,并作出MS2磁化率测量系统MS2D探头与MS2B传感器测量值之间的校正曲线。对模拟样品测量结果的分析表明,不同形状和大小的样品(所含磁性矿物分布均一)在进行MS2D测量时,测量相对偏差可控制在2%以内,表明上述测量系统可以用于陨石的磁化率测量。 2) 对所选600块南极格罗夫山陨石用MS2D探头进行了磁化率测量,得出这600块陨石的磁化率㏒χ(10-9m3/kg)数据,并用MS2B探头测量其中375块用来作岩石矿物学分类用的小块劈分样品的磁化率㏒χ(10-9m3/kg)。这600块格罗夫山陨石磁化率分布模式与南极其他区域收集的陨石较吻合,对应H、L、LL群呈3个明显的峰分布。相同的陨石用MS2D与MS2B两种探头测量,将它们的磁化率数据进行对比,显示它们的结果相当一致(相关系数R2=0.97),也同时证明MS2D用于磁化率测量是行之有效的。 3)测量了44块沙漠陨石和9块降落型陨石的磁化率,在此基础上对南极格罗夫山陨石、沙漠陨石及降落型陨石数据做了对比讨论。格罗夫山陨石、沙漠陨石及降落型陨石磁化率值分布出现不同程度的偏移,总体来说磁化率㏒χ平均值为降落型陨石>南极陨石>沙漠陨石,这主要是由于陨石所受风化程度的差异造成的。风化作用使陨石部分金属发生氧化,因而降低了磁化率。 4)基于陨石的岩石矿物学分类,172块平衡型普通球粒陨石的磁化率分布,与文献上南极陨石磁化率分布基本一致,不过格罗夫山H、L、LL型普通球粒陨石磁化率分布范围更为狭窄,反映了南极不同地区陨石风化程度的差异。 5)讨论了陨石磁化率分类的有效性,分析了部分异常值出现的原因。磁化率分类结果与部分格罗夫山陨石的岩石矿物学分类(申请者作为陨石分类小组成员完成了其中的部分工作)结果相当吻合,仅在群之间约有5%的重叠,表明磁化率可作为化学群分类的重要参考数据。由于各陨石所受风化程度的差异,风化程度较强的少量陨石在磁性分类的基础上,还需其他工作加以证实。部分小质量(小于3g)且有部分或完整熔壳的陨石,磁化率受熔壳的影响达10%以上,偏离了其初始矿物的磁化率值,不能反映其真实的化学群类型,这部分磁化率数据仅供参考。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. The aim of this work is to constrain the size, composition and surface properties of asteroids (2867) Steins and (21) Lutetia, targets of the Rosetta mission. Rosetta is en route to rendezvous with comet 67P/Churyumov-Gerasimenko.

Methods. Thermal-Infrared N-band observations for Lutetia and Steins were obtained using, respectively, TIMMI2 on the ESO 3.6-m telescope at La Silla and VISIR at the UT3 VLT telescope on Cerro Paranal; visible light curves for Steins were obtained using NTT+SUSI2, while R-band photometry for Lutetia was obtained with the 2.0-m Faulkes Telescope North on Haleakala. For Steins, the NEATM model was used to constrain its visible geometric albedo and beaming parameter. A detailed thermophysical model was implemented and used to analyze our set of observations of Lutetia as well as previous reported measurements.

Results. The visible photometry of Steins was used along with data from the literature to yield a slope parameter of G=0.32(-0.11)(+0.14). Problems during the observations led to the loss of measurements on two of the three N-band filters requested for Steins. Using the remaining data and the polarimetric albedo recently published, we were able to constrain the thermal beaming parameter as eta > 1.2, which is more similar to near-Earth asteroids and suggests either high thermal inertia or a very rough surface. For Lutetia, the best fit visible geometric albedo obtained with our model and the reported observation is p(nu)=0.129, significantly lower than that obtained if one applies the same model to previously reported measurements. The discrepancy cannot be explained solely by assuming inhomogeneities in the surface properties and we suggest that the most plausible explanation is the presence of one or more large craters on the northern hemisphere. For both sets of measurements, the implied single scattering albedo of Lutetia is compatible with laboratory measurements of carbonaceous chondrite meteorites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995nm wavelength range, and designated 2008 TC3 (refs 4-6). It subsequently hit the Earth. Because it exploded at 37km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article explores what the recovery of 2008 TC3 in the form of the Almahata Sitta meteorites may tell us about the source region of ureilites in the main asteroid belt. An investigation is made into what is known about asteroids with roughly the same spectroscopic signature as 2008 TC3. A population of low-inclination near-Earth asteroids is identified with spectra similar to 2008 TC3. Five asteroid families in the Main Belt, as well as a population of ungrouped asteroids scattered in the inner and central belts, are identified as possible source regions for this near-Earth population and 2008 TC3. Three of the families are ruled out on dynamical and spectroscopic grounds. New near-infrared spectra of 142 Polana and 1726 Hoffmeister, lead objects in the two other families, also show a poor match to Almahata Sitta. Thus, there are no Main Belt spectral analogs to Almahata Sitta currently known. Space weathering effects on ureilitic materials have not been investigated, so that it is unclear how the spectrum of the Main Belt progenitor may look different from the spectra of 2008 TC3 and the Almahata Sitta meteorites. Dynamical arguments are discussed, as well as ureilite petrogenesis and parent body evolution models, but these considerations do not conclusively point to a source region either, other than that 2008 TC3 probably originated in the inner asteroid belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth’s environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68- year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies of the variation of geomagnetic activity over the past 140 years have quantified the "coronal source" or "open" magnetic flux F-s that leaves the solar atmosphere and enters the heliosphere and have shown that it has risen, on average, by 34% since 1963 and by 140% since 1900. This variation is reflected in studies of the heliospheric field using isotopes deposited in ice sheets and meteorites by the action of galactic comic rays. The variation has also been reproduced using a model that demonstrates how the open flux accumulates and decays, depending on the rate of flux emergence in active regions and on the length of the solar cycle. The cosmic ray flux at energies > 3 GeV is found to have decayed by about 15% during the 20(th) century (and by about 4% at > 13 GeV). We show that the changes in the open flux do reflect changes in the photospheric and sub-surface field which offers an explanation of why open flux appears to be a good proxy for solar irradiance extrapolation. Correlations between F-s, solar cycle length, L, and 11-year smoothed sunspot number, R-11, explain why the various irradiance reconstructions for the last 150 years are similar in form. Possible implications of the inferred changes in cosmic ray flux and irradiance for global temperatures on Earth are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R similar to 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of sigma less than or similar to 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as sigma similar or equal to 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 +/- 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only +0.02 +/- 0.02 dex, +0.02 +/- 0.01 dex and +0.01 +/- 0.01 km s(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 +/- 0.02 M-circle dot and that it is similar to 1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T-cond greater than or similar to 1000 K) are slightly (similar to 0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T-cond in differential abundances (twins -HIP 56948) can be reproduced very well by adding similar to 3 M-circle plus of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung - Die vorliegende Dissertation beschreibt die massenspektrometrische Bestimmung der Edelgaskonzentrationen und -isotopenverhältnisse von insgesamt 47 Enstatit-Chondriten (E-Chondriten). E-Chondrite bilden eine Meteoritengruppe, die sich durch einen hohen Reduktionsgrad auszeichnet. Es gibt Hinweise darauf, dass sie im inneren Bereich des Sonnensystems entstanden. Ihre chemischen und mineralogischen Eigenschaften können daher auch Aufschluss über die Genese der terrestrischen Planeten geben. Die Edelgasmessungen hatten im wesentlichen die Berechnung von Bestrahlungsaltern sowie die Untersuchung der getrappten Edelgaskomponenten zum Ziel. Die Bestrahlungsalter der E-Chondrite liegen zwischen 0.5 und 50 Millionen Jahren. Eine zweifelsfreie Aussage über Häufungen in der Altersverteilung, die auf große Impaktereignisse auf dem Mutterkörper hinweisen könnten, lässt sich aufgrund der relativ hohen Unsicherheit der Alter (20 Prozent) nicht treffen.Etwa 10 Prozent der E-Chondrite enthalten signifikante solare Gasanteile. Alle zählen zum nicht-equilibrierten petrologischen Typ 3.In der elementaren Zusammensetzung der getrappten schweren Edelgase fällt auf, dass EH3-Chondrite (H für high iron) vorrangig ein stärker fraktioniertes (planetares), relativ Ar-armes Edelgasmuster aufweisen, während alle übrigen Typen E4-6 von einer sog. subsolaren, relativ Ar-reichen Signatur dominiert werden. Diese Verteilung und Zusammensetzung lassen sich nicht ohne weiteres mit dem Modell zur Entstehung der petrologischen Typen durch Metamorphose, wie es für die gewöhnlichen Chondrite formuliert wurde, erklären.