1000 resultados para Metallic-glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical indentation test was conducted on as-cast and annealed Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass, and the evolution of the morphology of the deformation zone of indents upon annealing was investigated. The DSC traces of the as-cast and annealed samples show that the enthalpy change at the glass transition, ΔH, decreases with the increasing of annealing temperature, indicating the reduction of the free volume upon annealing. The morphology of the indents implies a reduced shear band activity in the annealed samples. The included angles (2θ) between two families of shear bands emanating from the edge of spherical indent in the as-cast and the annealed samples were measured to be in the range of 88-79°, which decrease with the increasing of annealing temperature, indicating pressure sensitive plasticity in the as-cast and annealed samples. By Mohr–Coulomb criterion, the pressure sensitive index, α, can be obtained on the basis of the measured 2θ. The sensitivity index increases with increasing temperature, implying an increase of 'atomistic friction' due to the reduction of the free volume upon annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic glass shows some superior properties different from crystalline, but the nature of amorphous structure and structural change during glass transition have not been completely understood yet. Molecular dynamics simulation provides intuitive insight into the microstructure and properties at atomistic level. Before probing into the microstructures of metallic glass with molecular dynamics (MD) simulation, it is important to obtain amorphous state first. In the current work, we reproduce the process of manufacturing metallic glass in laboratory including the melting, equilibrating and quenching procedure with molecular dynamics simulations. The structure changing at melting point and glass transition temperature are investigated with the different cooling processing. The partial radial distribution function (PRDF) is applied as a criterion to judge the final amorphous state obtained considering the quenching at different cooling rates and the effects of cooling rate on the formation of amorphous structures are further discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic glass shows some superior properties different from crystalline, but the nature of amorphous structure and structural change during glass transition have not been completely understood yet. Molecular dynamics simulation provides intuitive insight into the microstructure and properties at atomistic level. Before probing into the microstructures of metallic glass with molecular dynamics (MD) simulation, it is important to obtain amorphous state first. In the current work, we reproduce the process of manufacturing metallic glass in laboratory including the melting, equilibrating and quenching procedure with molecular dynamics simulations. The structure changing at melting point and glass transition temperature are investigated with the different cooling processing. The partial radial distribution function (PRDF) is applied as a criterion to judge the final amorphous state obtained considering the quenching at different cooling rates and the effects of cooling rate on the formation of amorphous structures are further discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an Mg-based metallic glass/titanium interpenetrating phase composite in which constituent phases form a homogeneously interconnected network. The porous titanium constrains shear bands propagation thoroughly and promotes shear bands branching and intersection subsequently. The homogeneous phase distribution promotes regularly distributed local shear deformation and leads to a uniform deformation for the composites. Moreover, the interpenetrating phase structure introduces a mutual-reinforcement between metallic glass and titanium. Therefore, the composite exhibits excellent mechanical performance with compressive fracture strength of 1783 MPa and fracture strain of 31%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extrusion behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glasses in the supercooled liquid region was investigated. Good extrusion formability was observed under low strain rates at temperatures higher than 395 °C. The metallic glasses were fully extruded without crystallization and failure within the range of T=395–415 °C under strain rates from 5×10−3 s−1 to 5×10−2 s−1, and the deformation behavior of the metallic glasses during the extrusion was found to be in a Newtonian viscous flow mode by a strain rate sensitivity of 1.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-based metallic glass interpenetrating phase composites (IPCs) containing 30-70 vol% titanium was fabricated in this study. The effects of reinforced phase volume fraction and interspace on the mechanical properties were investigated systematically. With increasing the volume fraction of titanium, the fracture strength and strain increased up to 1860 MPa and 44%, respectively. The results showed that the critical volume fraction (around 40%) of Ti metal should be required for significantly improving plasticity of IPC. Decreasing the interspace of the titanium phase could lead to enhancement of yield and fracture strength. The deformation behavior and strengthening mechanisms were discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lattice dynamical studies of the metallic glass Ca70Mg30 by Bhatia and Singh on their model contained two shortcomings, firstly the electron-ion interaction matrix was wrong and secondly, the numerical value of the bulk modulus of the electron gas was accepted arbitrarily. By modifying the electron-ion dynamical matrix and determining all the model parameters from the experimental data, we made a fresh study of the lattice dynamics of Ca70Mg30 and compared it to the earlier studies of Bhatia and Singh and also with experimental phonons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-speed imaging directly correlates the propagation of a particular shear band with mechanical measurements during uniaxial compression of a bulk metallic glass. Imaging shows shear occurs simultaneously over the entire shear plane, and load data, synced and time-stamped to the same clock as the camera, reveal that shear sliding is coincident with the load drop of each serration. Digital image correlation agrees with these results. These data demonstrate that shear band sliding occurs with velocities on the order of millimeters per second. Fracture occurs much more rapidly than the shear banding events, thereby readily leading to melting on fracture surfaces.