951 resultados para Membrane-transport
Resumo:
O trabalho descrito nesta tese mostra de forma detalhada a fabricação e caracterização de diferentes microssensores eletroquímicos os quais têm sido recentemente utilizados como sondas em grupo de técnicas conhecida como Scanning Electrochemical Probe Microscopy (SEPM). Desta forma, a caracterização de superfícies pode ser feita explorando diferentes fenômenos interfaciais relevantes à Ciência. Neste sentido, as interfaces de materiais cristalinos como hidroxiapatita (materiais dentários) e calcita foram o foco de estudo neste trabalho. Assim, diferentes técnicas SEPM foram exploradas no sentido de se obter informações relevantes relacionadas aos processos dentários, como a erosão ácida e hipersensibilidade. Inicialmente, microeletrodos de platina foram desenvolvidos empregando uma metodologia convencional na qual são utilizados microfibras encapsuladas em capilares de vidro. Scanning Electrochemical Microscopy (SECM) no modo amperométrico foi utilizada para obtenção de informações com relação às alterações de topografia do esmalte dentário causadas pelo contato com substâncias ácidas. Adicionalmente, SECM foi empregada no estudo do transporte de espécies eletroativas em amostras de dentina e investigações relacionadas ao bloqueio dos túbulos empregando-se cremes dentais comerciais foram realizadas. A permeação de peróxido de hidrogênio pela dentina também foi estudada. Os resultados de SECM foram comparados com imagens SEM obtidas nas mesmas condições experimentais. Microeletrodos de membrana ionófora íon-seletiva (Ion Selective Microelectrodes-ISMEs) sensíveis a íons cálcio também foram desenvolvidos e caracterizados, com subsequente aplicação em SECM no modo potenciométrico. A dissolução ácida de esmalte bovino (erosão dentária) foi investigada em diferentes valores de pH (2,5; 4,5; 6,8). Além disso, o transporte de íons cálcio através de membranas porosas sintéticas foi avaliado a uma distância tip/substrato de 300µm. Alterações no fluxo de íons cálcio foram correlacionadas em experimentos realizados na presença e ausência de campos magnéticos gerados por nanopartículas de magnetita incorporadas à membrana porosa. Microcristais de calcita facilmente sintetizados pelo método de precipitação foram utilizados como superfície modelo para investigações interfaciais, cujos resultados podem ser correlacionados aos materiais dentários. Desta forma, nanopipetas de vidro preenchidas com eletrólito suporte foram fabricadas e utilizadas como sonda em Scanning Ion Conductance Microscopy (SICM). O mapeamento topográfico de alta resolução espacial da superfície de um microcristal de calcita foi obtido utilizando o modo de varredura hopping mode. Adicionalmente, sondas multifuncionais ISME-SICM também foram desenvolvidas e caracterizadas para investigações simultâneas com relação às alterações topográficas e quantificação de íons cálcio sobre a superfície de um microcristal de calcita. A adição de reagentes ácidos no canal SICM promoveu a dissolução da superfície do microcristal, sendo obtidos dados cinéticos de dissolução. Investigações em meio neutro também foram realizadas utilizando a sonda ISME-SICM. Os resultados experimentais obtidos também foram comparados com aqueles oriundos de simulação computacional.
Resumo:
The planctomycetes are a phylum of bacteria that have a unique cell compartmentalisation and yeast-like budding cell division and peptidoglycan-less proteinaceous cell walls. We wished to further our understanding of these unique organisms at the molecular level by searching for conserved amino acid sequence motifs and domains in the proteins encoded by Rhodopirellula baltica. Using BLAST and single-linkage clustering, we have discovered several new protein domains and sequence motifs in this planctomycete. R. baltica has multiple members of the newly discovered GEFGR protein family and the ASPIC C-terminal domain family, whilst most other organisms for which whole genome sequence is available have no more than one. Many of the domains and motifs appear to be restricted to the planctomycetes. It is possible that these protein domains and motifs may have been lost or replaced in other phyla, or they may have undergone multiple duplication events in the planctomycete lineage. One of the novel motifs probably represents a novel N-terminal export signal peptide. With their unique cell biology, it may be that the planctomycete cell compartmentalisation plan in particular needs special membrane transport mechanisms. The discovery of these new domains and motifs, many of which are associated with secretion and cell-surface functions, will help to stimulate experimental work and thus enhance further understanding of this fascinating group of organisms. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.
Resumo:
Sulfate (SO42-) is an important anion regulating many metabolic and cellular processes. Maintenance Of SO42- homeostasis occurs in the renal proximal tubule via membrane transport proteins. Two SO42- transporters that have been characterized and implicated in regulating serum SO42- levels are: NaSi- 1, a Na+-SO4 (2-) cotransporter located at the brush border membrane and Sat-1, a SO4 (2-) -anion exchanger located on the basolateral membranes of proximal tubular cells. Unlike Sat-1, for which very few studies have looked at regulation of its expression, NaSi- 1 has been shown to be regulated by various hormones and dietary conditions in vivo. To study this further, NaSj- I (SLC13A1) and Sat- I (SLC26A1) gene structures were determined and recent studies have characterized their respective gene promoters. This review presents the current understanding of the transcriptional regulation of NaSj- I and Sat- 1, and describes possible pathogenetic implications which arise as a consequence of altered SO(4)(2-)homeostasis. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Membrane traffic in activated macrophages is required for two critical events in innate immunity: proinflammatory cytokine secretion and phagocytosis of pathogens. We found a joint trafficking pathway linking both actions, which may economize membrane transport and augment the immune response. Tumor necrosis factor alpha (TNF alpha) is trafficked from the Golgi to the recycling endosome (RE), where vesicle-associated membrane protein 3 mediates its delivery to the cell surface at the site of phagocytic cup formation. Fusion of the RE at the cup simultaneously allows rapid release of TNF alpha and expands the membrane for phagocytosis.
Resumo:
Hypercoiling polymers can be suited for application to living systems because they are similar in structure to the protein-based lipid assemblies found at fluid interfaces within the body. This leads to a range of exciting possibilities, not only in membrane transport applications but also in biosensors, drug delivery and mechanistic studies of biological membrane function. This study is focused in the study of the stability and suitability of nanostructures made of a hypercoiling polymer for drug delivery applications. The polymer poly (styrene-maleic acid) (PSMA) was combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) to form amphiphilic nanostructures. The stability and suitability of these polymer-phospholipid nanocarriers for hydrophobic and hydrophilic molecules load and release was analyzed by several techniques. It was found that several of the studied molecules had a substantial effect on the surface charge and stability of the nanocarrier. It was also demonstrated that two types of nanocarriers, chemically modified and unmodified, were able to control the release of the molecules, especially in the case of hydrophobic compounds. In addition, as the hydrophobicity increased the release slowed down. These clear nanocarriers have the potential to behave very favorably at interfaces such as the tear lipid film were transparency is a requirement, giving a new way of controlled drug release in the eye.
Resumo:
An electrostatic model for osmotic flow through circular cylindrical pores is developed to describe the reflection coefficient for the membrane transport in the presence of surface charges on the pore wall and the solute. For a spherical solute placed at an arbitrary radial position in the pore, the electrical potential was computed by a spectral element method applied to the Poisson-Boltzmann equation together with the condition of electrical neutrality. The interaction energy between the surface charges was used to estimate the osmotic reflection coefficient. The proposed model predicts that even for a small Debye length compared to the pore radius, the repulsive electrostatic interaction between the surface charges could significantly increase the osmotic flow through the pore.
Resumo:
Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available. © 2013 Spanish General Council of Optometry.
Resumo:
Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
Resumo:
Schistosomes ingest host erythrocytes, liberating large quantities of haem. Despite its toxicity, haem is an essential factor for numerous biological reactions, and may be an important iron source for these helminths. We used a fluorescence haem analogue, palladium mesoporphyrin, to investigate pathways of haem acquisition, and showed that palladium mesoporphyrin accumulates in the vitellaria (eggshell precursor glands) and ovary of female Schistosoma mansoni. Furthermore, incubation of adult females in 10-100 μm cyclosporin A (IC50 = 2.3 μm) inhibits the uptake of palladium mesoporphyrin to these tissues, with tenfold reductions in fluorescence intensity of the ovary. In vitro exposure to cyclosporin A resulted in significant perturbation of egg production, reducing egg output from 34 eggs per female to 5.7 eggs per female over the incubation period, and retardation of egg development. We characterized a S. mansoni homologue of the haem-responsive genes of Caenorhabditis elegans. The gene (Smhrg-1) encodes a protein with a molecular weight of approximately 17 kDa. SmHRG-1 was able to rescue growth in haem transport-deficient HEM1Δ yeast. Transcriptional suppression of Smhrg-1 in adult S. mansoni worms resulted in significant delay in egg maturation, with 47% of eggs from transcriptionally suppressed worms being identified as immature compared with only 27% of eggs laid by control worms treated with firefly luciferase. Our findings indicate the presence of transmembrane haem transporters in schistosomes, with a high abundance of these molecules being present in tissues involved in oogenesis.
Resumo:
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
Lutein (3,3'-dihydroxy alpha-carotene), a xanthophyll present in plant chloroplasts, increases the permeability of phospholipid vesicles to Ca2+, even though the pigment does not bind the metal ion. Energy-dependent uptake of Ca2+ by mitochondria is inhibited by lutein, which permits a rapid efflux of the ion from Ca2+-loaded mitochondria. These results are consistent with the view that the deleterious action of lutein on mitochondrial oxidative phosphorylation results from its destabilizing action on membrane structure.
Resumo:
A method was developed for the determination of lanthanum in the cytoplasm of human erythrocytes after they were incubated in lanthanum nitrate or citrate solutions. The lanthanum concentration in the cytoplasm of incubated erythrocytes is much higher than that in normal erythrocytes. It is suggested lanthanum can transport through the membrane of erythrocyte in vitro. Solutions containing chelator are unsuitable to be washing buffer in the investigation.