972 resultados para Membrane Attack Complex
Resumo:
Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the beta-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.
Resumo:
Ternary cobalt(III) complexes CoL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyridoquinoxaline (dpq in 2) and dipyridophenazine (dppz in 3) are synthesized, characterized from X-ray crystallographic, analytical and spectral techniques, and their utility in photodynamic therapy (PDT) of thyroid diseases caused by TSH receptor dysfunction is probed. The complexes display a visible spectral band within the PDT spectral window at similar to 690 nm. Photodynamic potential was estimated through DNA cleavage activity of the dpq and dppz complexes in UV-A light of 365 nm and red light of 676 nm. The reactions proceed via the hydroxyl radical pathway. The complexes retain their DNA photocleavage activity in red light under anaerobic conditions, a situation normally prevails in hypoxic tumor core. Investigation into the photocytotoxic potential of these complexes showed that the dppz complex 3 is approximately 4-fold more active in the HEK293 cells expressing human thyrotropin receptor (HEK293-hTSHR) than in the parental cell line and has an insignificant effect on an unrelated human cervical carcinoma cell line (HeLa). Photoexcitation of complex 3 in HEK293-hTSHR cells leads to damage hTSHR as evidenced from the decrease in cAMP formation both in absence and presence of hTSH and decrease in the TSHR immunofluorescence with a concomitant cytoplasmic translocation of the membrane protein, cadherin. The involvement of hTSHR is evidenced from the ability of complex 3 to bind to the extracellular domain of hTSHR (hTSHR-ECD) with a K-d value of 81 nM and from the photocleavage of hTSHR-ECD.
Resumo:
The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.
Resumo:
The polyvinylidene fluoride (PVDF) membrane is modified by the chemical etchant-route employing a sodium naphthalene charge-transfer complex followed by impregnation with Nafion ionomer or polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) polymeric blend solutions by a dip-coating technique to form pore-filled-membrane electrolytes for application in direct methanol fuel cells (DMFCs). The number of coatings on the surface-modified PVDF membrane is varied between 5 and 15 and is found to be optimum at 10 layers both for Nafion and PVA-PSSA impregnations for effective DMFC performance. Hydrophilicity of the modified-membrane electrolytes is studied by determining average contact angle and surface-wetting energy. Morphology of the membranes is analyzed by a cross-sectional scanning electron microscope. The modified PVDF membrane electrolytes are characterized for their water-methanol sorption in conjunction with their mechanical properties, proton conductivity, and DMFC performance. Air permeability for the modified membranes is studied by a capillary-flow porometer. Methanol crossover flux across modified-PVDF-membrane electrolytes is studied by measuring the mass balance of methanol using a density meter. DMFCs employing membrane electrode assemblies with the modified PVDF membranes exhibit a peak power-density of 83 mW/cm(2) with Nafion impregnation and 59 mW/cm(2) for PVA-PSSA impregnation, respectively. Among the membranes studied here, stabilities of modified-pore-filled PVDF-Nafion and PVDF-PVA-PSSA membranes with 10-layers coat are promising for application in DMFCs. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3518774] All rights reserved.
Resumo:
Physalis mottle virus (PhMV) belongs to the tymogroup of positive-strand RNA viruses with a genome size of 6 kb. Crude membrane preparations from PhMV-infected Nicotiana glutinosa plants catalyzed the synthesis of PhMV genomic RNA from endogenously bound template. Addition of exogenous genomic RNA enhanced the synthesis which was specifically inhibited by the addition of sense and antisense transcripts corresponding to 3' terminal 242 nucleotides as well as the 5' terminal 458 nucleotides of PhMV genomic RNA while yeast tRNA or ribosomal RNA failed to inhibit the synthesis. This specific inhibition suggested that the 5' and 3' non-coding regions of PhMV RNA might play an important role in viral replication.
Resumo:
Pore-forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. The dynamics of lysis and underlying self-assembly or oligomerization pathways leading to pore formation are incompletely understood. In this manuscript the pore-forming kinetics and lysis dynamics of Cytolysin-A (ClyA) toxins on red blood cells (RBCs) are quantified and compared with experimental lysis data. Lysis experiments are carried out on a fixed mass of RBCs, under isotonic conditions in phosphate-buffered saline, for different initial toxin concentrations ranging from 2.94-14.7 nM. Kinetic models which account for monomer binding, conformation and oligomerization to form the dodecameric ClyA pore complex are developed and lysis is assumed to occur when the number of pores per RBC (n(p)) exceeds a critical number, n(pc). By analysing the model in a sublytic regime (n(p) < n(pc)) the number of pores per RBC to initiate lysis is found to lie between 392 and 768 for the sequential oligomerization mechanism and between 5300 and 6300 for the non-sequential mechanism. Rupture rates which are first order in the number of RBCs are seen to provide the best agreement with the lysis experiments. The time constants for pore formation are estimated to lie between 1 and 20 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Cell rupture takes places in 100s of seconds, and occurs predominantly with a steady number of pores ranging from 515 to 11 000 on the RBC surface for the sequential mechanism. Both the sequential irreversible and non-sequential kinetics provide similar predictions of the hemoglobin release dynamics, however the hemoglobin released as a function of the toxin concentration was accurately captured only with the sequential model. Each mechanism develops a distinct distribution of mers on the surface, providing a unique experimentally observable fingerprint to identify the underlying oligomerization pathways. Our study offers a method to quantify the extent and dynamics of lysis which is an important aspect of developing novel drug and gene delivery strategies based on pore-forming toxins.
Resumo:
The host-pathogen interactions in Mycobacterium tuberculosis infection are significantly influenced by redox stimuli and alterations in the levels of secreted antigens. The extracyto-plasmic function (ECF) sigma factor sigma(K) governs the transcription of the serodominant antigens MPT70 and MPT83. The cellular levels of sigma(K) are regulated by the membrane-associated anti-sigma(K) (RskA) that localizes sigma(K) in an inactive complex. The crystal structure of M. tuberculosis sigma(K) in complex with the cytosolic domain of RskA (RskAcyto) revealed a disulfide bridge in the -35 promoter-interaction region of sigma(K). Biochemical experiments reveal that the redox potential of the disulfide-forming cysteines in sigma(K) is consistent with its role as a sensor. The disulfide bond in sigma(K) influences the stability of the sigma(K)-RskA(cyto) complex but does not interfere with sigma(K)-promoter DNA interactions. It is noted that these disulfide-forming cysteines are conserved across homologues, suggesting that this could be a general mechanism for redox-sensitive transcription regulation.
Resumo:
Mitochondria have a central role in the intrinsic pathway of apoptosis and involve activation of several transmembrane channels leading to release of death factors. Reduced expression of a mitochondrial J-protein DnaJC15 was associated with the development of chemoresistance in ovarian cancer cells. DnaJC15 was found to be a part of mitochondrial protein-transport machinery, though its connection with cell death mechanisms is still unclear. In the present study, we have provided evidence towards a novel function of DnaJC15 in regulation of mitochondrial permeability transition pore (MPTP) complex in normal and cancer cells. Overexpression of DnaJC15 resulted in MPTP opening and induction of apoptosis, whereas reduced amount of protein suppressed MPTP activation, upon cisplatin treatment. DnaJC15 was found to exert its proapoptotic function through the essential component of MPTP, cyclophilin D (CypD). Our results reveal a specific role of DnaJC15 in recruitment and coupling of CypD with mitochondrial permeability transition. In summary, our analysis provides first-time insights on the functional connection between mitochondrial inner membrane protein translocation machinery-associated J-protein DnaJC15 and regulation of cell death pathways.
Resumo:
Nuclear pore complexes (NPCs) are very selective filters that sit on the membrane of the nucleus and monitor the transport between the cytoplasm and the nucleoplasm. For the central plug of NPC two models have been suggested in the literature. The first suggests that the plug is a reversible hydrogel while the other suggests that it is a polymer brush. Here we propose a model for the transport of a protein through the plug, which is general enough to cover both the models. The protein stretches the plug and creates a local deformation, which together with the protein, we refer to as the bubble. We start with the free energy for creation of the bubble and consider its motion within the plug. The relevant coordinate is the center of the bubble which executes random walk. We find that for faster relaxation of the gel, the diffusion of the bubble is greater. (C) 2014 Elsevier-B.V. All rights reserved.
Resumo:
Iron(III)-Schiff base complexes, namely, Fe(tsc-py)(2)](NO3) (1), Fe(tsc-acpy)(2)](NO3) (2) and Fe(tsc-VB6)(2)](NO3) (3), where tsc-py, tsc-acpy and tsc-VB6 are the respective Schiff bases derived from thiosemicarbazide (tsc) and pyridine-2-aldehyde (tsc-py), 2-acetyl pyridine (tsc-acpy) and vitamin B-6 (pyridoxal, tsc-VB6), have been prepared, structurally characterized and their photocytotoxicity studied in cancer HeLa cells. The single crystal X-ray structures of the complexes 1 and 2 show a distorted octahedral geometry formed by the FeN4S2 core. The low-spin and 1 : 1 electrolytic complexes display a broad absorption band in the visible region. Complexes 1 and 2, without any VB6 moiety are not cytotoxic under light or dark conditions. Complex 3 is significantly photocytotoxic under visible light of 400-700 nm giving an IC50 value of 22.5 mu M in HeLa cells with no dark toxicity (IC50 > 100 mu M). The photo-induced cell death is attributable to apoptotic pathways involving photo-assisted generation of intracellular ROS. The observed photocytotoxicity of complex 3 could be the result of its better photosensitizing property combined with its enhanced uptake into cancer cells via a VB6 transporting membrane carrier (VTC) mediated diffusion pathway due to the presence of the VB6 moiety compared to the two non-vitamin B-6 analogues, complexes 1 and 2.
Resumo:
11 p.
Resumo:
Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.
We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.
We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.
Resumo:
Efficient and accurate localization of membrane proteins is essential to all cells and requires a complex cascade of interactions between protein machineries. This is exemplified in the recently discovered Guided Entry of Tail-anchored protein pathway, in which the central targeting factor Get3 must sequentially interact with three distinct binding partners (Get4, Get1 and Get2) to ensure the targeted delivery of Tail-anchored proteins to the endoplasmic reticulum membrane. To understand the molecular and energetic principles that provide the vectorial driving force of these interactions, we used a quantitative fluorescence approach combined with mechanistic enzymology to monitor the effector interactions of Get3 at each stage of Tail-anchored protein targeting. We show that nucleotide and membrane protein substrate generate a gradient of interaction energies that drive the cyclic and ordered transit of Get3 from Get4 to Get2 and lastly to Get1. These data also define how the Get3/Tail-anchored complex is captured, handed over, and disassembled by the Get1/2 receptor at the membrane, and reveal a novel role for Get4/5 in recycling Get3 from the endoplasmic reticulum membrane at the end of the targeting reaction. These results provide general insights into how complex cascades of protein interactions are coordinated and coupled to energy inputs in biological systems.
Resumo:
This study was designed to determine cytotoxic effects of PBDE-47 and HBCDs individually or with a mixture of both compounds exposure to Hep G2 cells. The results showed PBDE-47 and HBCDs induced increase of nitric oxide synthase (NOS) activity, release of NO. dissipation of mitochondria membrane potential and cell apoptosis. Exposure to HBCDs induced ROS formation. Moreover, preincubation with PTIO (NO scavanger) and N-acetylcysteine (ROS scavanger) partially reversed cytotoxic effects of these compounds. The possible mechanism is that PBDE-47 and HBCDs could boost generation of NO and/or ROS, impact mitochondria, and result in start-ups of apoptosis program. Cells exposed to mixture of both compounds and each of them showed non-apoptotic rate significant difference, but the combination of them caused more adverse effects on cells. These results Suggest that PBDE-47 and HBCDs in single and complex exposure have the cytotoxic activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (C) 2008 Elsevier B.V. All rights reserved.