920 resultados para Mechanical stress


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aims to present the feasibility of using a composite using discarded material from the cultivation of banana tree (pseudostem), which is fibrillated together with synthetic resin replacing glass fiber to be used in structural elements that do not demand large mechanical stress such as reservoirs, troughs, domes, sewage pipes etc.. For this, there were studies about the mechanical properties of a composite made with polyester resin and fiber of banana tree (Musa sp, musac), in which the splints were removed from the pseudostem, being made fibrillation by hand, with the aid of a brush steel, followed by natural drying. After treatment for cleaning and removal of wax, the fiber was cut into pieces of approximately 60 mm to 100 mm, for, together with synthetic resin, make cards of a features fiber composite with random orientation relative to the weight of the resin. We used three different percentages of fiber (3%, 6% and 9%), in order to make a comparative study between them and what would be the one with the best performance. Were manufactured specimens of each material and then subjected to uniaxial tensile tests, three point bending, moisture absorption and thermal characteristics. The results show that, in general, the use of banana tree fiber is feasible simply by an improvement in the production process (machining of the procedure) and greater care in the manufacture of parts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: Because water sorption of autopolymerizing acrylic reline resins is accompanied by volumetric change, it is a physical property of importance. As residual monomer leaches into the oral fluids and causes tissue irritation, low solubility of these resins is desired. Another requirement is a satisfactory bond between the autopolymerizing acrylic resins and the denture base acrylic resin. PURPOSE: This study compared the water sorption, solubility, and the transverse bond strength of 2 autopolymerizing acrylic resins (Duraliner II and Kooliner) and 1 heat-polymerizing acrylic resin (Lucitone 550). MATERIAL AND METHODS: The water sorption and solubility test was performed as per International Standards Organization Specification No. 1567 for denture base polymers. Bond strengths between the autopolymerizing acrylic resins and the heat-polymerizing acrylic resin were determine with a 3-point loading test made on specimens immersed in distilled water at 37 degrees C for 50 hours and for 30 days. Visual inspection determined whether failures were adhesive or cohesive. RESULTS: Duraliner II acrylic resin showed significantly lower water sorption than Kooliner and Lucitone 550 acrylic resins. No difference was noted in the solubility of all materials. Kooliner acrylic resin demonstrated significantly lower transverse bond strength to denture base acrylic resin and failed adhesively. The failures seen with Duraliner II acrylic resin were primarily cohesive in nature. CONCLUSIONS: Autopolymerizing acrylic reline resins met water sorption and solubility requirements. However, Kooliner acrylic resin demonstrated significantly lower bond strength to denture base acrylic resin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS). and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day: alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS. and decreased at the 10th day. Groups1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Utilization of contemporary post and core systems has facilitated the aesthetic restoration of endodontically treated teeth. Light transmission and biocompatibility have been enhanced by the introduction of metal-free post systems. The periodontal and endodontic status, root length, and histological structure of the devitalized teeth must be considered in order to achieve successful restoration following endodontic treatment. This article presents various restorative criteria for the aesthetic placement and buildup of post and core materials, as well as the preservation of maximum coronal and root structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: The aim of this study was to evaluate the influence of ultrasound during the removal of posts cemented with either zinc phosphate cement, glass ionomer cement or resin cement. Methodology: Eighty-four single-rooted teeth were prepared and after cementation of cast posts, they were randomly divided into six groups of 14. Groups 1, 2 and 3 did not receive ultrasonic vibration, whilst groups 4, 5 and 6 received ultrasonic vibration for 10 min. The force necessary for post removal was determined using a universal testing machine. Results were statistically analysed using ANOVA and Tukey tests (5%). Results: The application of ultrasonic vibration reduced the retention provided by zinc phosphate and glass ionomer cements by 39% and 33%, respectively. Conclusions: A statistically significant reduction in the force necessary to remove posts cemented with zinc phosphate and glass ionomer cements occurred following application of ultrasound. The application of ultrasonic vibration did not influence the retention of cast posts cemented with resin cement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to evaluate the resistance to fracture of intact and restored human maxillary premolars. METHOD AND MATERIALS: Thirty noncarious human maxillary premolars, divided into three groups of 10, were submitted to mechanical tests to evaluate their resistance to fracture. Group 1 consisted of intact teeth. Teeth in group 2 received mesio-occlusodistal cavity preparations and were restored with direct resin composite restorations. Teeth in group 3 received mesio-occlusodistal cavity preparations and were restored with ceromer inlays placed with the indirect technique. After restoration, teeth were stored at 37 degrees C for 24 hours and then thermocycled for 500 cycles at temperatures of 5 degrees C and 55 degrees C. RESULTS: Statistical analysis revealed that group 3 (178.765 kgf) had a significantly greater maximum rupture load than did group 1 (120.040 kgf). There was no statistically significant difference between groups 1 and 2 or between groups 2 and 3. CONCLUSION: Class II cavity preparations restored with indirect ceromer inlays offered greater resistance to fracture than did intact teeth. The fracture resistance of teeth restored with resin composite was not significantly different from that of either the ceromer or intact teeth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of 2% chlorhexidine on the microtensile bond strength of composite resin to dentin treated with three dentin bonding systems. Materials and Methods: Flat dentinal surfaces were prepared in 24 extracted human third molars. Teeth were randomly divided into 8 distinct experimental groups according to the adhesive applied (Prime & Bond NT, Single Bond and Clearfil SE Bond), the application (yes/no) of chlorhexidine, and the time point at which it was applied (before or after acid etching the dentin). Composite resin blocks were built up over treated surfaces, and teeth were then stored in water at 37°C for 24 h. Samples were thermocycled, stored under the same conditions, and then vertically sectioned, thus obtaining specimens with 1.0 ± 0.1 mm2 cross-sectional area. Specimens were stressed in tension at 0.5 mm/min crosshead speed. Bond strength results were evaluated using a one-way ANOVA (p < 0.05). The modes of failures were verified using optical microscopy. Dentin disks were obtained from 3 additional teeth treated in the same manner for observation under SEM. The most representative samples of fractured specimens were also observed under SEM. Results: No statistically significant differences of bond strength values were found between any groups. Failures occurred mainly within the bond; exclusively adhesive fractures (adhesive-dentin) were not observed. Conclusion: The 2% chlorhexidine solution, applied before or after acid etching of the dentin, did not interfere with the microtensile bond strength of composite resin to the dentin treated with Prime & Bond NT, Single Bond, or Clearfil SE Bond bonding systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the pullout strength of a glass fiber-reinforced composite post (glass FRC) cemented with three different adhesive systems and one resin cement. The null hypothesis was that pullout strengths yielded by the adhesive systems are similar. Materials and Methods: Thirty bovine teeth were selected. The size of the specimens was standardized at 16 mm by sectioning off the coronal portion and part of the root. The specimens were divided into three groups, according to the adhesive system, which were applied following the manufacturers' instructions: G1, ScotchBond Multi-Purpose Plus; G2, Single Bond; G3, Tyrian SPE/One-Step Plus. The glass FRCs (Reforpost) were etched with 37% H3PO4 for 1 min and silanized (Porcelain Primer). Thereafter, they were cemented with the dual resin cement En-Force. The specimens were stored for 24 h, attached to an adapted device, and submitted to the pullout test in a universal testing machine (1 mm/min). The data were submitted to the one-way ANOVA and Tukey's test (α = 0.05). Results: G1 (30.2 ± 5.8 Kgf) displayed the highest pullout strength (p < 0.001) when compared to G2 (18.6 ± 5.8 Kgf) and G3 (14.3 ± 5.8 Kgf), which were statistically similar. Analysis of the specimens revealed that all failures occurred between the adhesive system and the root dentin (pullout of the post cement), regardless of group. Conclusion: The multiple-bottle, total-etch adhesive system provided higher pullout strength of the glass FRC when compared to the single-bottle, total-etch, and single-step self-etching adhesive systems. The null hypothesis was rejected (p < 0.001).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (n = 10 per group) were tested, either as received from the manufacturer or after chairside silica coating (30-μm CoJet-Sand). Results: There was no significant difference in the flexural strength of nonconditioned (504 to 525 MPa) and silica-coated (514 to 565 MPa) specimens (P > .05) (analysis of variance). The type of post did have a significant effect on flexural strength (P < .05). Conclusion: Chairside silica coating did not affect the flexural strength of both carbon and quartz FRC posts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).