965 resultados para Mechanical robot design
Resumo:
This work has as objective to develop an interesting research line in the Optical Instrumentation area, that is to associate the Optical Design to the Ophthalmology area. The purpose of it is handling the optical design techniques to design a widely used ophthalmologic instrument called slit lamp. The optical and mechanical design of the slit lamp prototype was carefully projected in order to improve the best quality image, the comfort of the patient and the user, the simplicity of handling, the facility of production the availability of optical and mechanical components in the national market and the low cost of production. The main goal of this work was to realize a project using totally national technology, cheapening the cost and forming the optimum image required for the slit lamp optical system.
Resumo:
This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nowadays, one of the most important concerns for many companies is to maintain the operation of their systems without sudden equipment break down. Because of this, new techniques for fault detection and location in mechanical systems subject to dynamic loads have been developed. This paper studies of the influence of the decay rate in the design of state observers using LMI for fault detection in mechanical systems. This influence is analyzed by the performance index proposed by Huh and Stein for the condition of a state observer. An example is presented to illustrate the methodology discussed.
Resumo:
Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.
Resumo:
Uno dei principali ambiti di ricerca dell’intelligenza artificiale concerne la realizzazione di agenti (in particolare, robot) in grado di aiutare o sostituire l’uomo nell’esecuzione di determinate attività. A tal fine, è possibile procedere seguendo due diversi metodi di progettazione: la progettazione manuale e la progettazione automatica. Quest’ultima può essere preferita alla prima nei contesti in cui occorra tenere in considerazione requisiti quali flessibilità e adattamento, spesso essenziali per lo svolgimento di compiti non banali in contesti reali. La progettazione automatica prende in considerazione un modello col quale rappresentare il comportamento dell’agente e una tecnica di ricerca (oppure di apprendimento) che iterativamente modifica il modello al fine di renderlo il più adatto possibile al compito in esame. In questo lavoro, il modello utilizzato per la rappresentazione del comportamento del robot è una rete booleana (Boolean network o Kauffman network). La scelta di tale modello deriva dal fatto che possiede una semplice struttura che rende agevolmente studiabili le dinamiche tuttavia complesse che si manifestano al suo interno. Inoltre, la letteratura recente mostra che i modelli a rete, quali ad esempio le reti neuronali artificiali, si sono dimostrati efficaci nella programmazione di robot. La metodologia per l’evoluzione di tale modello riguarda l’uso di tecniche di ricerca meta-euristiche in grado di trovare buone soluzioni in tempi contenuti, nonostante i grandi spazi di ricerca. Lavori precedenti hanno gia dimostrato l’applicabilità e investigato la metodologia su un singolo robot. Lo scopo di questo lavoro è quello di fornire prova di principio relativa a un insieme di robot, aprendo nuove strade per la progettazione in swarm robotics. In questo scenario, semplici agenti autonomi, interagendo fra loro, portano all’emergere di un comportamento coordinato adempiendo a task impossibili per la singola unità. Questo lavoro fornisce utili ed interessanti opportunità anche per lo studio delle interazioni fra reti booleane. Infatti, ogni robot è controllato da una rete booleana che determina l’output in funzione della propria configurazione interna ma anche dagli input ricevuti dai robot vicini. In questo lavoro definiamo un task in cui lo swarm deve discriminare due diversi pattern sul pavimento dell’arena utilizzando solo informazioni scambiate localmente. Dopo una prima serie di esperimenti preliminari che hanno permesso di identificare i parametri e il migliore algoritmo di ricerca, abbiamo semplificato l’istanza del problema per meglio investigare i criteri che possono influire sulle prestazioni. E’ stata così identificata una particolare combinazione di informazione che, scambiata localmente fra robot, porta al miglioramento delle prestazioni. L’ipotesi è stata confermata applicando successivamente questo risultato ad un’istanza più difficile del problema. Il lavoro si conclude suggerendo nuovi strumenti per lo studio dei fenomeni emergenti in contesti in cui le reti booleane interagiscono fra loro.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
L'applicazione di misure, derivanti dalla teoria dell'informazione, fornisce un valido strumento per quantificare alcune delle proprietà dei sistemi complessi. Le stesse misure possono essere utilizzate in robotica per favorire l'analisi e la sintesi di sistemi di controllo per robot. In questa tesi si è analizzata la correlazione tra alcune misure di complessità e la capacità dei robot di portare a termine, con successo, tre differenti task. I risultati ottenuti suggeriscono che tali misure di complessità rappresentano uno strumento promettente anche nel campo della robotica, ma che il loro utilizzo può diventare difficoltoso quando applicate a task compositi.
Resumo:
The Gracias Laboratory at Johns Hopkins University has developed microgrippers which utilize chemically-actuated joints to be used in micro-surgery. These grippers, however, take up to thirty minutes to close fully when activated biochemicals in the human body. This is very problematic and could limit the use of the devices in surgery. It is the goal of this research to develop a gripper that uses theGracias Laboratory's existing joints in conjunction with mechanical components to decrease the closing time. The purpose of including the mechanical components is to induce a state of instability at which time a small perturbation would cause the joint to close fully.The main concept of the research was to use the lateral buckling of a triangular gripper geometry and use a toggle mechanism to decrease the closure time of the device. This would create a snap-action device mimicking the quick closure of a Venus flytrap. All developed geometries were tested using finite element analysis to determine ifloading conditions produced the desired buckled shape. This research examines lateral buckling on the micro-scale and the possibility ofusing this phenomenon in a micro-gripper. Although a final geometry with the required deformed shaped was not found, this document contains suggestions for future geometries that may produce the correct deformed shape. It was determined through this work that in order to obtain the desired deformed shape, polymeric sections need to be added to the geometry. This simplifies the analysis and allows the triangular structure to buckle in the appropriate way due to the added joints. Future work for this project will be completed by undergraduate students at Bucknell University. Fabrication and testing of devices will be done at Johns Hopkins University in the Gracias Laboratory.
Resumo:
SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.
Resumo:
The Bucknell Humanoid Robot Arm project was developed in order toprovide a lightweight robotic arm for the IHMC / Bucknell University bipedal robot that will provide a means of manipulation and facilitate operations in urban environments. The resulting fabricated arm described in this thesis weighs only 13 pounds, and is capable of holding 11 pounds fully outstretched, lifting objects such as tools, and it can open doors. It is also capable of being easily integrated with the IHMC / Bucknell University biped. This thesis provides an introduction to robots themselves, discusses the goals of the Bucknell Humanoid Robot Arm project, provides a background on some of the existing robots, and shows how the Bucknell Humanoid Robot Arm fits in with the studies that have been completed. After reading these studies, important items such as design trees and operational scenarios were completed. The completion of these items led to measurable specifications and later the design requirements and specifications. A significant contribution of this thesis to the robotics discipline involves the design of the actuator itself. The arm uses of individual, lightweight, compactly designed actuators to achieve desired capabilities and performance requirements. Many iterations were completed to get to the final design of each actuator. After completing the actuators, the design of the intermediate links and brackets was finalized. Completion of the design led to the development of a complex controls system which used a combination of Clanguage and Java.
Resumo:
The European Higher Education Area (EHEA) has leaded to a change in the way the subjects are taught. One of the more important aspects of the EHEA is to support the autonomous study of the students. Taking into account this new approach, the virtual laboratory of the subject Mechanisms of the Aeronautical studies at the Technical University of Madrid is being migrated to an on-line scheme. This virtual laboratory consist on two practices: the design of cam-follower mechanisms and the design of trains of gears. Both practices are software applications that, in the current situation, need to be installed on each computer and the students carry out the practice at the computer classroom of the school under the supervision of a teacher. During this year the design of cam-follower mechanisms practice has been moved to a web application using Java and the Google Development Toolkit. In this practice the students has to design and study the running of a cam to perform a specific displacement diagram with a selected follower taking into account that the mechanism must be able to work properly at high speed regime. The practice has maintained its objectives in the new platform but to take advantage of the new methodology and try to avoid the inconveniences that the previous version had shown. Once the new practice has been ready, a pilot study has been carried out to compare both approaches: on-line and in-lab. This paper shows the adaptation of the cam and follower practice to an on-line methodology. Both practices are described and the changes that has been done to the initial one are shown. They are compared and the weak and strong points of each one are analyzed. Finally we explain the pilot study carried out, the students impression and the results obtained.
Resumo:
The European Higher Education Area (EHEA) has leaded to a change in the way the subjects are taught. One of the more important aspects of the EHEA is to support the autonomous study of the students. Taking into account this new approach, the virtual laboratory of the subject Mechanisms of the Aeronautical studies at the Technical University of Madrid is being migrated to an on-line scheme. This virtual laboratory consist on two practices: the design of cam-follower mechanisms and the design of trains of gears. Both practices are software applications that, in the current situation, need to be installed on each computer and the students carry out the practice at the computer classroom of the school under the supervision of a teacher. During this year the design of cam-follower mechanisms practice has been moved to a web application using Java and the Google Development Toolkit. In this practice the students has to design and study the running of a cam to perform a specific displacement diagram with a selected follower taking into account that the mechanism must be able to work properly at high speed regime. The practice has maintained its objectives in the new platform but to take advantage of the new methodology and try to avoid the inconveniences that the previous version had shown. Once the new practice has been ready, a pilot study has been carried out to compare both approaches: on-line and in-lab. This paper shows the adaptation of the cam and follower practice to an on-line methodology. Both practices are described and the changes that has been done to the initial one are shown. They are compared and the weak and strong points of each one are analyzed. Finally we explain the pilot study carried out, the students impression and the results obtained.
Resumo:
The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.