174 resultados para McElhinny, Bonnie
Resumo:
S100A12 (Calgranulin C) is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs. It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs, S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and the effect that ions (Ca2+, Zn2+ or both together) have in modifying protein-lipid interactions. More specifically, we intended to address issues such as: (1) is the protein-membrane interaction modulated by the presence of ions? (2) is the protein overall structure affected by the presence of the ions and membrane models simultaneously? (3) what are the specific conformational changes taking place when ions and membranes are both present? (4) does the protein have any kind of molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure organization. The presence of both Ca2+ and Zn2+ ions modify the binding, conformation and thermal stability of the protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution complement the previously determined crystal structure information on this family of proteins, enhancing our understanding of its dynamics of interaction with membranes.
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
In this dissertation, the National Survey of Student Engagement (NSSE) serves as a nodal point through which to examine the power relations shaping the direction and practices of higher education in the twenty-first century. Theoretically, my analysis is informed by Foucault’s concept of governmentality, briefly defined as a technology of power that influences or shapes behavior from a distance. This form of governance operates through apparatuses of security, which include higher education. Foucault identified three essential characteristics of an apparatus—the market, the milieu, and the processes of normalization—through which administrative mechanisms and practices operate and govern populations. In this project, my primary focus is on the governance of faculty and administrators, as a population, at residential colleges and universities. I argue that the existing milieu of accountability is one dominated by the neoliberal assumption that all activity—including higher education—works best when governed by market forces alone, reducing higher education to a market-mediated private good. Under these conditions, what many in the academy believe is an essential purpose of higher education—to educate students broadly, to contribute knowledge for the public good, and to serve as society’s critic and social conscience (Washburn 227)—is being eroded. Although NSSE emerged as a form of resistance to commercial college rankings, it did not challenge the forces that empowered the rankings in the first place. Indeed, NSSE data are now being used to make institutions even more responsive to market forces. Furthermore, NSSE’s use has a normalizing effect that tends to homogenize classroom practices and erode the autonomy of faculty in the educational process. It also positions students as part of the system of surveillance. In the end, if aspects of higher education that are essential to maintaining a civil society are left to be defined solely in market terms, the result may be a less vibrant and, ultimately, a less just society.
Resumo:
The Calvert Cliffs, which form much of the western coastline of the Chesapeake Bay in Calvert County, Maryland, are actively eroding and destabilizing, resulting in a critical situation for many homes in close proximity to the slope's crest. Past studies have identified that where waves directly interact with the toe of the slope, wave action controls cliff recession; however, where waves do not regularly interact with the slope toe, the past work identified that freeze-thaw controls recession. This study investigated the validity of this second claim by analyzing the recession rate and freeze-thaw behavior of six study sites along the Calvert Cliffs that are not directly affected by waves. While waves do remove failed material from the toe, in these regions freeze-thaw is believed to be the dominant factor driving recession at the Calvert Cliffs. Past recession rates were calculated using historical aerial photographs and were analyzed together with a number of other variables selected to represent the freeze-thaw behavior of the Calvert Cliffs. The investigation studied sixteen independent variables and found that over 65% of recession at these study sites can be represented by the following five variables: (1) cliff face direction, (2 and 3) the percent of total cliff height composed of soil with freeze-thaw susceptibility F4 and F2, (4) the number of freeze-thaw cycles, and (5) the weighted shear strength. Future mitigation techniques at these sites should focus on addressing these variables and might include vegetation or addressing the presence of water along the face of the slope. Unmitigated, the Calvert Cliffs will continue to recede until a stable slope angle is reached and maintained.
Resumo:
Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator) in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s), there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid. BETASCAN is publicly accessible on the Web at http://betascan.csail.mit.edu.
Resumo:
The present study examines linguistic and sociolinguistic factors in a Web-enhanced
Resumo:
Published in English and Hebrew
Resumo:
Reviews include: Family Centered Services: A Handbook for Practitioners.Bonnie K. Williams (Ed.). The National Resource Center for Family Centered Practice, School of Social Work, The University of Iowa. Iowa City, Iowa.Reviewed by Lois Wright Building Skills in High-Risk Families: Strategies for the Home-Based Practitioner. Jane Peterson, Paula E. Kohrt, Linda M. Shadoin, Karen J. Authier. Boys Town, Nebraska. Boys Town Press. Reviewed by Sharon Alpert
Resumo:
One hundred and twenty point counts of Oligocene to Recent sands and sandstones from DSDP sites in the Japan and Mariana intraoceanic forearc and backarc basins demonstrate that there is a clear compositional difference between the continentally influenced Japan forearc and backarc sediments, and the totally oceanic Mariana forearc and backarc sediments. Japan forearc sediments average 10 QFL%Q, 0.82 P/F, 2 Framework%Mica, 74 LmLvLst%Lv, and 19 LmLvLst%Lst. In contrast, the Mariana forearc and backarc sediments average 0 QFL%Q, 1.00 P/F, 0 Framework%Mica, 98 LmLvLst%Lv, and 1 LmLvLst%Lst. Sediment compositions in the Japan region are variable. The Honshu forearc sediments average 5 QFL%Q, 0.94 P/F, 1 Framework%Mica, 82 LmLvLst%Lv, and 15 LmLvLst%Lst. The Yamato Basin sediments (DSDP Site 299) average 13 QFL%Q, 0.70 P/F, 3 Framework%Mica, 78 LmLvLst%Lv, and 14 LmLvLst%Lst. The Japan Basin sediments (DSDP Site 301) average 24 QFL%Q, 0.54 P/F, 9 Framework%Mica, 58 LmLvLst%Lv, and 21 LmLvLst%Lst. P/F and Framework%Mica are higher in the Yamato Basin sediments than in the forearc sediments due to an increase in modal potassium content of volcanic rocks from east to west, on the island of Honshu. Site 301 possesses a higher QFL%Q and LmLvLst%Lst, and lower LmLvLst%Lv than Site 299 because it receives sediment from the Asian mainland as well as the island of Honshu. DSDP Site 293 sediments, in the Mariana region, average 0.97 P/F, 1 Framework%Mica, 13 LmLvLst%Lm and 83 LmLvLst%Lv, due to their proximity to the island of Luzon. The remaining Mariana forearc and backarc sediments show a uniform composition.
Resumo:
There has been a marked decline in the summer extent of Arctic sea ice over the past few decades. Data from autonomous ice mass-balance buoys can enhance our understanding of this decline. These buoys monitor changes in snow deposition and ablation, ice growth, and ice surface and bottom melt. Results from the summer of 2008 showed considerable large-scale spatial variability in the amount of surface and bottom melt. Small amounts of melting were observed north of Greenland, while melting in the southern Beaufort Sea was quite large. Comparison of net solar heat input to the ice and heat required for surface ablation showed only modest correlation. However, there was a strong correlation between solar heat input to the ocean and bottom melting. As the ice concentration in the Beaufort Sea region decreased, there was an increase in solar heat to the ocean and an increase in bottom melting.
Resumo:
The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.
Resumo:
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.