949 resultados para Maximum likelihood estimator (MLE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Dengue is the most prevalent arboviral disease in tropical areas. In Mato Grosso, outbreaks are reported every year, but studies on dengue in this state are scarce. METHODS: Natural transovarial infection of Aedes aegypti by a flavivirus was investigated in the Jardim Industriário neighborhood of Cuiabá, Mato Grosso. Eggs were collected with ovitraps during the dry, intermediate, and rainy seasons of 2012. After the eggs hatched and the larvae developed to adulthood, mosquitoes (n = 758) were identified and allocated to pools of 1-10 specimens according to the collection location, sex, and climatic period. After RNA extraction, multiplex semi-nested RT-PCR was performed to detect the four dengue virus (DENV) serotypes, yellow fever virus, West Nile virus and Saint Louis encephalitis virus. RESULTS: DENV-4 was the only flavivirus detected, and it was found in 8/50 pools (16.0%). Three of the positive pools contained females, and five contained males. Their nucleotide sequences presented 96-100% similarity with DENV-4 genotype II strains from Manaus, Amazonas. The minimum infection rate was 10.5 per 1000 specimens, and the maximum likelihood estimator of the infection rate was 11.6 (95% confidence interval: 4.8; 23.3). CONCLUSIONS: This study provides the first evidence of natural transovarial infection by DENV-4 in Ae. Aegypti in Mato Grosso, suggesting that this type of infection might serve as a mechanism of virus maintenance during interepidemic periods in Cuiabá, a city where dengue epidemics are reported every year. These results emphasize the need for efficient vector population control measures to prevent arbovirus outbreaks in the state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider robust parametric procedures for univariate discrete distributions, focusing on the negative binomial model. The procedures are based on three steps: ?First, a very robust, but possibly inefficient, estimate of the model parameters is computed. ?Second, this initial model is used to identify outliers, which are then removed from the sample. ?Third, a corrected maximum likelihood estimator is computed with the remaining observations. The final estimate inherits the breakdown point (bdp) of the initial one and its efficiency can be significantly higher. Analogous procedures were proposed in [1], [2], [5] for the continuous case. A comparison of the asymptotic bias of various estimates under point contamination points out the minimum Neyman's chi-squared disparity estimate as a good choice for the initial step. Various minimum disparity estimators were explored by Lindsay [4], who showed that the minimum Neyman's chi-squared estimate has a 50% bdp under point contamination; in addition, it is asymptotically fully efficient at the model. However, the finite sample efficiency of this estimate under the uncontaminated negative binomial model is usually much lower than 100% and the bias can be strong. We show that its performance can then be greatly improved using the three step procedure outlined above. In addition, we compare the final estimate with the procedure described in

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we focus on the problem of estimating a bounded density using a finite combination of densities from a given class. We consider the Maximum Likelihood Procedure (MLE) and the greedy procedure described by Li and Barron. Approximation and estimation bounds are given for the above methods. We extend and improve upon the estimation results of Li and Barron, and in particular prove an $O(\\frac{1}{\\sqrt{n}})$ bound on the estimation error which does not depend on the number of densities in the estimated combination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] In many practical situations where spatial rainfall estimates are needed, rainfall occurs as a spatially intermittent phenomenon. An efficient geostatistical method for rainfall estimation in the case of intermittency has previously been published and comprises the estimation of two independent components: a binary random function for modeling the intermittency and a continuous random function that models the rainfall inside the rainy areas. The final rainfall estimates are obtained as the product of the estimates of these two random functions. However the published approach does not contain a method for estimation of uncertainties. The contribution of this paper is the presentation of the indicator maximum likelihood estimator from which the local conditional distribution of the rainfall value at any location may be derived using an ensemble approach. From the conditional distribution, representations of uncertainty such as the estimation variance and confidence intervals can be obtained. An approximation to the variance can be calculated more simply by assuming rainfall intensity is independent of location within the rainy area. The methodology has been validated using simulated and real rainfall data sets. The results of these case studies show good agreement between predicted uncertainties and measured errors obtained from the validation data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the estimation of population size from onesource capture–recapture data, that is, a list in which individuals can potentially be found repeatedly and where the question is how many individuals are missed by the list. As a typical example, we provide data from a drug user study in Bangkok from 2001 where the list consists of drug users who repeatedly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur, but drug users with zero contacts are not present, requiring the size of this group to be estimated. Statistically, these data can be considered as stemming from a zero-truncated count distribution.We revisit an estimator for the population size suggested by Zelterman that is known to be robust under potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is equivalent to a binomial likelihood. This result allows the extension of the Zelterman estimator by means of logistic regression to include observed heterogeneity in the form of covariates. We also review an estimator proposed by Chao and explain why we are not able to obtain similar results for this estimator. The Zelterman estimator is applied in two case studies, the first a drug user study from Bangkok, the second an illegal immigrant study in the Netherlands. Our results suggest the new estimator should be used, in particular, if substantial unobserved heterogeneity is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the applications of capture–recapture methods to human populations. Capture–recapture methods are commonly used in estimating the size of wildlife populations but can also be used in epidemiology and social sciences, for estimating prevalence of a particular disease or the size of the homeless population in a certain area. Here we focus on estimating the prevalence of infectious diseases. Several estimators of population size are considered: the Lincoln–Petersen estimator and its modified version, the Chapman estimator, Chao’s lower bound estimator, the Zelterman’s estimator, McKendrick’s moment estimator and the maximum likelihood estimator. In order to evaluate these estimators, they are applied to real, three-source, capture-recapture data. By conditioning on each of the sources of three source data, we have been able to compare the estimators with the true value that they are estimating. The Chapman and Chao estimators were compared in terms of their relative bias. A variance formula derived through conditioning is suggested for Chao’s estimator, and normal 95% confidence intervals are calculated for this and the Chapman estimator. We then compare the coverage of the respective confidence intervals. Furthermore, a simulation study is included to compare Chao’s and Chapman’s estimator. Results indicate that Chao’s estimator is less biased than Chapman’s estimator unless both sources are independent. Chao’s estimator has also the smaller mean squared error. Finally, the implications and limitations of the above methods are discussed, with suggestions for further development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture–recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture–recapture models. Alternative methods, still under the capture–recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture–recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao’s lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates—in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the applications of capture-recapture methods to human populations. Capture-recapture methods are commonly used in estimating the size of wildlife populations but can also be used in epidemiology and social sciences, for estimating prevalence of a particular disease or the size of the homeless population in a certain area. Here we focus on estimating the prevalence of infectious diseases. Several estimators of population size are considered: the Lincoln-Petersen estimator and its modified version, the Chapman estimator, Chao's lower bound estimator, the Zelterman's estimator, McKendrick's moment estimator and the maximum likelihood estimator. In order to evaluate these estimators, they are applied to real, three-source, capture-recapture data. By conditioning on each of the sources of three source data, we have been able to compare the estimators with the true value that they are estimating. The Chapman and Chao estimators were compared in terms of their relative bias. A variance formula derived through conditioning is suggested for Chao's estimator, and normal 95% confidence intervals are calculated for this and the Chapman estimator. We then compare the coverage of the respective confidence intervals. Furthermore, a simulation study is included to compare Chao's and Chapman's estimator. Results indicate that Chao's estimator is less biased than Chapman's estimator unless both sources are independent. Chao's estimator has also the smaller mean squared error. Finally, the implications and limitations of the above methods are discussed, with suggestions for further development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so. that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.