962 resultados para Maximum entropy method
Resumo:
Dados de bovinos compostos foram analisados para avaliar o efeito da epistasia nos modelos de avaliação genética. As características analisadas foram os pesos aos 205 (P205) e 390 dias (P390) e perímetro escrotal aos 390 dias (PE390). As análises foram realizadas pela metodologia de máxima verossimilhança considerando-se dois modelos: o modelo 1 incluiu como covariáveis os efeitos aditivos diretos e maternos, e os não aditivos das heterozigoses para os efeitos diretos e para o materno total, e o modelo 2 considerou também o efeito direto de epistasia. Para comparação dos modelos, foram utilizados o critério de informação de Akaike (AIC) e o critério de informação Bayesiano de Schwartz (BIC), e o teste de razão de verossimilhança. A inclusão da epistasia no modelo de avaliação genética pouco alterou as estimativas de componentes de (co)variâncias genéticas aditivas e, consequentemente, as herdabilidades. O teste de verossimilhança e o critério de Akaike sugeriram que o modelo 2, que inclui a epistasia, apresentou maior aderência aos dados para todas as características analisadas. O critério BIC indicou este modelo como o melhor apenas para P205. Para análise genética dessa população, o modelo que considerou o efeito de epistasia foi o mais adequado.
Resumo:
Data from the slaughter of 24,001 chickens that were part of a selection program for the production of commercial broilers were used to estimate genetic trend for absolute carcass (CW), breast meat (BRW), and leg (LW) weights, and relative carcass (CY), breast meat (BRY), and leg (LY) weights. The components of (co) variance and breeding values of individuals were obtained by the restricted maximum likelihood method applied to animal models. The relationship matrix was composed of 132,442 birds. The models included as random effects, maternal additive genetic and permanent environmental for CW, BRW, LW, CY, and BRY, and only maternal permanent environmental for LY, besides the direct additive genetic and residual effects, and as fixed effects, hatch week, parents' mating group and sex. The estimates of genetic trend were obtained by average regression of breeding value on generation, and the average genetic trend was estimated by regression coefficients. The genetic trends for CW (+ 6.0336 g/generation), BRW (+ 3.6723 g/generation), LW (+ 1.5846 g/generation), CY (+ 0.1195%/generation), and BRY (+ 0.1388%/generation) were positive, and they were in accordance with the objectives of the selection program for these traits. The genetic trend for LY(-0.0019%/generation) was negative, possibly due to the strong emphasis on selection for BRY and the negative correlations between these two traits.
Resumo:
The effect of genetic and non-genetic factors for carcass, breast meat and leg weights, and yields of a commercial broiler line were investigated using the restricted maximum likelihood method, considering four different animal models, including or excluding maternal genetic effect with covariance between direct and maternal genetic effects, and maternal permanent environmental effect. The likelihood ratio test was used to determine the most adequate model for each trait. For carcass, breast, and leg weight, and for carcass and breast yield, maternal genetic and permanent environmental effects as well as the covariance between direct and maternal genetic effects were significant. The estimates of direct and maternal heritability were 0.17 and 0.04 for carcass weight, 0.26 and 0.06 for breast weight, 0.22 and 0.02 for leg weight, 0.32 and 0.02 for carcass yield, and 0.52 and 0.04 for breast yield, respectively. For leg yield, maternal permanent environmental effect was important, in addition to direct genetic effects. For that trait, direct heritability and maternal permanent environmental variance as a proportion of the phenotypic variance were 0.43 and 0.02, respectively. The results indicate that ignoring maternal effects in the models, even though they were of small magnitude (0.02 to 0.06), tended to overestimate direct genetic variance and heritability for all traits.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
We present a novel nonparametric density estimator and a new data-driven bandwidth selection method with excellent properties. The approach is in- spired by the principles of the generalized cross entropy method. The pro- posed density estimation procedure has numerous advantages over the tra- ditional kernel density estimator methods. Firstly, for the first time in the nonparametric literature, the proposed estimator allows for a genuine incor- poration of prior information in the density estimation procedure. Secondly, the approach provides the first data-driven bandwidth selection method that is guaranteed to provide a unique bandwidth for any data. Lastly, simulation examples suggest the proposed approach outperforms the current state of the art in nonparametric density estimation in terms of accuracy and reliability.
Resumo:
The total meat yield in a beef cattle production cycle is economically very important and depends on the number of calves born per year or birth season, being directly related to reproductive potential. Accumulated Productivity (ACP) is an index that expresses a cow`s capacity to give birth regularly at a young age and to wean animals of greater body weight. Using data from cattle participating in the ""Program for Genetic Improvement of the Nelore Breed"" (PMGRN - Nelore Brasil), bi-trait analyses were performed using the Restricted Maximum Likelihood method based on an ACP animal model and the following traits: age at first calving (AFC), female body weight adjusted for 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted for 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. Median estimated ACP heritability was 0.19 and the genetic correlations with AFC, BW365, BW450, SC365, SC450, SC550 and SC730 were 0.33, 0.70, 0.65, 0.08, 0.07, 0.12 and 0.16, respectively. ACP increased and AFC decreased over time, revealing that the selection criteria genetically improved these traits. Selection based on ACP appears to favor the heaviest females at 365 and 450 days of age who showed better reproductive performance as regards AFC. Scrotal circumference was not genetically associated with ACP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
P>Age at first calving (AFC) measures the entry of heifers into the beef cattle production system. This trait can be used as a selection criterion for earlier reproductive performance. Using data from Nelore cattle participating in the `Program for Genetic Improvement of the Nelore Breed` (PMGRN-Nelore Brazil), bi-trait analyses were performed using the restricted maximum likelihood method, based on an AFC animal model and the following traits: female body weight adjusted to 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted to 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. The heritability estimates for AFC ranged from 0.02 +/- 0.02 to 0.04 +/- 0.02. The estimates of additive direct heritabilities (with standard error) for BW365, BW450, SC365, SC450, SC550 and SC730 were 0.36 +/- 0.07, 0.38 +/- 0.07, 0.48 +/- 0.07, 0.65 +/- 0.07, 0.64 +/- 0.07 and 0.42 +/- 0.07, respectively, and the genetic correlations with AFC were -0.38, -0.33, 0.10, -0.13, -0.13 and 0.06, respectively. In the herds studied, selection for SC365, SC450, SC550 or SC730 should not cause genetic changes in AFC. Selection based on BW365 or BW450 would favor smaller AFC breeding values. However, the low magnitude of direct heritability estimates for AFC in these farms indicates that changes in phenotypical expression depend mostly on non-genetic factors.
Resumo:
The aim of the present study was to evaluate the genetic and environmental factors affecting records of longissimus muscle area (LMA) and back fat thickness (BF) obtained between the 12th and 13th ribs, and rump fat thickness (RF) between the hook and pin bones, measured by real-time ultrasound in Nelore cattle. Also, weight records of 22,778 animals born from 1998 to 2003, in ten farms across six Brazilian states were used. Carcass traits as measured by ultrasound of the live animal were recorded from 2002 to 2004 in 2590 males and females with ages varying from 450 to 599 days. Fixed models including farm, year and season of birth, sex and type of feed effects, and the covariates age of dam (AOD) and age of animal at measurement were used to study the effect of environmental factors on these traits. The genetic parameters for LMA, BF and RF were estimated with two and three-trait animal models with 120-day weights using a restricted maximum likelihood method. All environmental effects significantly affected carcass traits, with the exception of year of birth for BF and RF and AOD for LMA. The heritability estimates for LMA, BF and RF were 0.35, 0.51 and 0.39, respectively. Standard errors obtained in one-trait analyses were from 0.07 to 0.09. Genetic correlation estimates between LMA and the two traits of subcutaneous fat were low (close to zero) and 0.74 between BF and RF, indicating that the selection for LMA should not cause antagonism in the genetic improvement of subcutaneous fat measured by real-time ultrasound. (C) 2007 Elsevier B.V. All fights reserved.
Resumo:
25th Annual Conference of the European Cetacean Society, Cadiz, Spain 21-23 March 2011.
Resumo:
26th Annual Conference of the European Cetacean Society, Galway, Ireland 26-28 March 2012.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 25 de Março de 2013, Universidade dos Açores.
Resumo:
Copyright © 2014 Entomological Society of America.
Resumo:
The species abundance distribution (SAD) has been a central focus of community ecology for over fifty years, and is currently the subject of widespread renewed interest. The gambin model has recently been proposed as a model that provides a superior fit to commonly preferred SAD models. It has also been argued that the model's single parameter (α) presents a potentially informative ecological diversity metric, because it summarises the shape of the SAD in a single number. Despite this potential, few empirical tests of the model have been undertaken, perhaps because the necessary methods and software for fitting the model have not existed. Here, we derive a maximum likelihood method to fit the model, and use it to undertake a comprehensive comparative analysis of the fit of the gambin model. The functions and computational code to fit the model are incorporated in a newly developed free-to-download R package (gambin). We test the gambin model using a variety of datasets and compare the fit of the gambin model to fits obtained using the Poisson lognormal, logseries and zero-sum multinomial distributions. We found that gambin almost universally provided a better fit to the data and that the fit was consistent for a variety of sample grain sizes. We demonstrate how α can be used to differentiate intelligibly between community structures of Azorean arthropods sampled in different land use types. We conclude that gambin presents a flexible model capable of fitting a wide variety of observed SAD data, while providing a useful index of SAD form in its single fitted parameter. As such, gambin has wide potential applicability in the study of SADs, and ecology more generally.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.