953 resultados para Matrices polymères


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El proyecto tiene como objetivo el estudio de las propiedades más importantes de las matrices doblemente estocásticas y algunas aplicaciones. Se comienza analizando algunas propiedades espectrales de las matrices no negativas de las que aquellas son un caso particular y se demuestra, en particular, el Teorema de Perron-Frobenius. Posteriormente se discute en detalle la relación entre las matrices doblemente estocásticas y la mayorización de vectores reales y el importante teorema de Birkhoff. El proyecto finaliza desarrollando algunas aplicaciones de este tipo de matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that the diagonal-Schur complements of strictly diagonally dominant matrices are strictly diagonally dominant matrices [J.Z. Liu, Y.Q. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004) 365-380], and the same is true for nonsingular H-matrices [J.Z. Liu, J.C. Li, Z.T. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Algebra Appl. 428 (2008) 1009-1030]. In this paper, we research the properties on diagonal-Schur complements of block diagonally dominant matrices and prove that the diagonal-Schur complements of block strictly diagonally dominant matrices are block strictly diagonally dominant matrices, and the same holds for generalized block strictly diagonally dominant matrices. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let A and B be nonsingular M-matrices. A lower bound on the minimum eigenvalue q(B circle A(-1)) for the Hadamard product of A(-1) and B, and a lower bound on the minimum eigenvalue q(A star B) for the Fan product of A and B are given. In addition, an upper bound on the spectral radius rho(A circle B) of nonnegative matrices A and B is also obtained. These bounds improve several existing results in some cases and the estimating formulas are easier to calculate for they are only depending on the entries of matrices A and B. (C) 2009 Elsevier Inc. All rights reserved.