993 resultados para Mass rock


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-rock d18O analyses of the Paleogene and Upper Cretaceous succession at Ocean Drilling Program Hole 807C suggest the presence of hiatuses between 876.95 and 894.47 mbsf and between 1138.82 and 1140.94 mbsf. The d13C data show a pronounced positive excursion between 1130 and 1180 mbsf that corresponds to the positive d13C values characteristic of the Paleocene. Despite the stratigraphic breaks in the section, the d18O data show a systematic increase between 1360 mbsf and the hiatus between 876.95 and 894.47 mbsf, which is consistent with previous suggestions of long-term climatic cooling through the Paleogene. The Cretaceous/Tertiary transition is apparently complete in this section and is of remarkable thickness. The expanded nature of this portion of the succession is probably the result of secondary depositional processes. High-resolution sampling across this boundary may reveal detailed structure of the d13C decline associated with the extinctions that mark the termination of the Cretaceous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seventeen sediment samples of Albian-Cenomanian to early Pliocene age from DSDP Hole 530A in the Angola Basin and six sediment samples of early Pliocene to late Pleistocene age from the Walvis Ridge were investigated by organic geochemical methods, including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. The organic matter in all samples is strongly influenced by a terrigenous component from the nearby continent. The amount of marine organic matter present usually increases with the total organic carbon content, which reaches an extreme value of more than 10% in a Cenomanian black shale from Hole 530A. At Site 530 the extent of preservation of organic matter in the deep sea sediments is related to mass transport down the continental slope, whereas the high organic carbon contents in the sediments from Site 532 reflect both high bioproductivity in the Benguela upwelling regime and considerable supply of terrigenous organic matter. The maturation level of the organic matter is low in all samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling on the Iberia Abyssal Plain during Ocean Drilling Program Leg 173 allowed us to recover Upper Cretaceous through Paleocene sediments at Sites 1068 and 1069 and only upper Paleocene sediments at Site 1067, which expands considerably the Upper Cretaceous to Paleocene record for this region. Of these three sites, Site 1068 recovered uppermost Cretaceous sediments as well as the most complete Paleocene record, whereas Site 1067 yielded only uppermost Paleocene sediments (Zone CP8). Site 1069 provided a rather complete upper Campanian through Maastrichtian section but a discontinuous Paleocene record. After a detailed calcareous nannofossil biostratigraphy was documented in distribution charts, we calculated mass accumulation rates for Holes 1068A and 1069A. Sediments in Hole 1068A apparently record the final stages of burial of a high basement block by turbidity flows. Accumulation rates through the Upper Cretaceous indicate relatively high rates, 0.95 g/cm**2/k.y., but may be unreliable because of the lack of datum points and/or possible hiatuses. Accumulation rates in the Paleocene section of Hole 1068A fluctuated every few million years from lower (~0.35 g/cm**2/k.y.) to higher rates (~0.85 g/cm**2/k.y.) until the latest Paleocene, when rates increased to an average of ~2.0 g/cm**2/k.y. Mass accumulation rates for the Upper Cretaceous in Hole 1069A indicate a steady rate of ~0.60 g/cm**2/k.y. from 75 to 72 Ma. There may have been one or more hiatuses between 72 and 68 Ma (combined Zone CC24 through Subzone CC25b), as indicated by the very low accumulation rate of 0.15 g/cm**2/k.y. The Paleocene section of Hole 1069A does not show the same continuous record, which may result from fluctuations in the carbonate compensation depth and poor recovery (average = 40%). Zones CP4 and CP5 are missing within a barren interval; this and numerous other barren intervals affect the precision of the nannofossil zonation and calculation of mass accumulation rates. However, in spite of these missing zones, mass accumulation rates do not seem to indicate the presence of hiatuses as the rates for this barren interval average ~1.0 g/cm**2/k.y. This study set out to test the hypothesis that a reliable biostratigraphic record could be constructed from sediments derived from turbidity flows deposited below the carbonate compensation depth. As illustrated here, not only could a reliable biostratigraphic record be determined from these sediments, but sedimentation and mass accumulation rates could also be determined, allowing inferences to be drawn concerning the sedimentary history of this passive margin. The reliability of this record is confirmed by independent verification by the establishment of a magnetostratigraphy for the same cores.