992 resultados para Mars, surface
Resumo:
The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H2 and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H2 and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H2O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.
Resumo:
Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter topography data, we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40°. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia, where 34% of the year liquid water would be stable if it were present. Locations of stability appear to correlate with the distribution of valley networks.
Resumo:
Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction.
Resumo:
Lichens meet some but not all of the criteria that must be fulfilled by inhabitants of Mars. They could withstand many aspects of the hostile environment especially if they live within the rocks as they do in the dry valleys of Antarctica. Lichens, however, are dual organisms and we have to presuppose the successful establishment of a variety of microorganisms on Mars and especially algae and fungi. To date, the evidence for the existence of microorganisms in Martian meteorites is controversial and there is no conclusive evidence of present life on the surface. In addition, if endolithic lichens have evolved on Mars and are alive today they would be subjected to a considerably more hostile environment than the extreme environments on Earth, which are regarded as at the limit of tolerance of present day lichens. The lack of liquid water over most of the surface and the problem of obtaining sufficient nitrogen resources are particular problems for Martian lichens. Further landings on Mars, scheduled for 2005 and future missions are likely to increase substantially our knowledge of the Martian surface and the possibilities for life by attempting to bring back samples of rock and minerals. In addition, the use of techniques such as Laser Raman technology and the development of gas chromatographic methods for use in space increase the probability that an answer to the question of whether lichens have existed on Mars will be obtained in the near future.
Resumo:
The book is devoted to results of studies of Pacific sediment composition, regularities of their distribution and processes of sedimentation in the Pacific Ocean. Materials obtained by Soviet expeditions are the main part of the book.
Resumo:
Distribution of iron and manganese speciations in ocean sediments of a section from the coast of Japan to the open Pacific Ocean is under consideration. Determinations of total iron, as well as of reactive iron contents and of total manganese, as well as of Mn4+ contents have been done. Significant increase of total Fe content in sediments from the coast to the pelagic zone occurs without noticeable increase in reactive Fe content. Presence of layers of volcanic and terrigenous coarse clastic material in clayey sediments results to sharp change in iron content. Manganese content increases from near coastal to pelagic sediments more than 10 times; oxidation degree of sediments also increases. There are three types of bottom sediments different by contents of iron and manganese forms: reduced, oxidized (red clay), and transitional. Content of total Fe is almost does not change with depth in sediments, content of reactive Fe increases in reduced sediments, and decreases in oxidized ones. Manganese content in red clay mass increases several times.
Resumo:
La station de mesure Molit entre dans la gamme de produits MAREL. Cette gamme est constituée d’outils développés pour l’observation en continu de paramètres hydrologiques. La bouée Molit a été déployée en baie de Vilaine du 2 mars 2011 au 22 septembre 2011. Cette station est équipée : - d’une sonde multipramètre MP6 qui mesure les paramètres : température, salinité, oxygène dissous, turbidité et fluorescence. Les mesures sont réalisées à 2 niveaux (surface et fond) avec une fréquence de une mesure horaire. - de deux analyseurs de nutriments (Chemini) mesurant les concentrations en nitrate et silicate avec une fréquence de une mesure toutes les 12 heures. Les données acquises par la bouée MOLIT sont transmises par liaison GSM numérique à la station de gestion Marel vilaine où elles sont validées. Un outil de contrôle qualité (OCQ) a été développé pour valider les données : elles peuvent être qualifiées selon 3 états : bon, douteux ou faux. Ils existent différents stades de validation : - stade T0.5 : pré-qualification automatique sur la base de seuils fixés avec 3 états : bon, douteux et faux. - Stade T1 : contrôle visuel et modification manuelle de l’état de qualité - Stade T2 : données corrigées (après étalonnage). Ce document synthétise les informations permettant de qualifier les données au stade T1 : - contrôles in-situ de la sonde multiparamètre réalisés par le laboratoire LER/MPL - historique des opérations de maintenance pendant la période de déploiement.
Resumo:
Un outil de contrôle qualité (OCQ) a été développé pour valider les données : elles peuvent être qualifiées selon 3 états : bon, douteux ou faux. Ils existent différents stades de validation : - stade T0.5 : pré-qualification automatique sur la base de seuils fixés avec 3 états : bon, douteux et faux. - Stade T1 : contrôle visuel et modification manuelle de l’état de qualité - Stade T2 : données corrigées (après étalonnage). Ce document synthétise les informations permettant de qualifier les données au stade T1 et T2 : - contrôles in-situ de la sonde multiparamètre réalisés par le laboratoire LER/MPL, - historique des opérations de maintenance pendant la période de déploiement, - constat de vérification des sondes multiparamètres après campagne.té et la fluorescence, en surface et fond)..