982 resultados para Marine zooplankton
Resumo:
A comparison between monthly mean ContinuousPlanktonRecorder (CPR) data and zooplankton data caught during winter and early spring with different sampling devices in the North Sea is presented to estimate the relative error in abundance of CPR measurements. CPR underestimates the abundance of zooplankton by a factor 25 during winter and early spring and by a factor 18 if Oithona spp. is not considered. This has serious implications for estimation of biomass as well as for modelling ecosystem dynamics.
Resumo:
Overfishing of large-bodied benthic fishes and their subsequent population collapses on the Scotian Shelf of Canada’s east coast1, 2 and elsewhere3, 4 resulted in restructuring of entire food webs now dominated by planktivorous, forage fish species and macroinvertebrates. Despite the imposition of strict management measures in force since the early 1990s, the Scotian Shelf ecosystem has not reverted back to its former structure. Here we provide evidence of the transient nature of this ecosystem and its current return path towards benthic fish species domination. The prolonged duration of the altered food web, and its current recovery, was and is being governed by the oscillatory, runaway consumption dynamics of the forage fish complex. These erupting forage species, which reached biomass levels 900% greater than those prevalent during the pre-collapse years of large benthic predators, are now in decline, having outstripped their zooplankton food supply. This dampening, and the associated reduction in the intensity of predation, was accompanied by lagged increases in species abundances at both lower and higher trophic levels, first witnessed in zooplankton and then in large-bodied predators, all consistent with a return towards the earlier ecosystem structure. We conclude that the reversibility of perturbed ecosystems can occur and that this bodes well for other collapsed fisheries.
Resumo:
Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.