973 resultados para Marine Reserve
Resumo:
In Washington State, the Department of Natural Resources (WA DNR) is responsible for managing state-owned aquatic lands. Aquatic reserves are one of many Marine Protected Area (MPA) designations in WA State that aim to protect sensitive aquatic and ecological habitat. We analyzed the designation and early planning processes of WA State aquatic reserves, identified gaps in the processes, and recommend action to improve the WA State aquatic reserve early planning approach. (PDF contains 4 pages)
Resumo:
The Tanzanian marine environment has been under threat for quite a long time now due to human activities. With the establishment of the Marine Parks and Reserve Act in 1994, several areas have been earmarked as marine parks. This act is aimed at conserving and protecting the marine environment all along the Tanzanian coastline. Once the parks and reserves are established and these areas brought under control, there will be a reduction in the illegal operations along the coast. The measures recently introduced by the government to eradicate dynamite fishing practices along the Tanzanian coastline are highly commendable.
Resumo:
NOAA’s National Centers for Coastal Ocean Science Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively and qualitatively compare marine ecosystems in tropical U.S. waters. The Biogeography Branch used similar protocols to generate new benthic habitat maps for Fish Bay, Coral Bay and the St. Thomas East End Reserve (STEER). While this mapping effort marks the third time that some of these shallow-water habitats (≤40 m) have been mapped, it is the first time that nearly 100% of the seafloor has been characterized in each of these areas. It is also the first time that high resolution imagery describing seafloor depth has been collected in each of these areas. Consequently, these datasets provide new information describing the distribution of coral reef ecosystems and serve as a spatial baseline for monitoring change in the Fish Bay, Coral Bay and the STEER. Benthic habitat maps were developed for approximately 64.3 square kilometers of seafloor in and around Fish Bay, Coral Bay and the STEER. Twenty seven percent (17.5 square kilometers) of these habitat maps describe the seafloor inside the boundaries of the STEER, the Virgin Islands National Park and the Virgin Islands Coral Reef National Monument. The remaining 73% (46.8 square kilometers) describe the seafloor outside of these MPA boundaries. These habitat maps were developed using a combination of semi-automated and manual classification methods. Habitats were interpreted from aerial photographs and LiDAR (Light Detection and Ranging) imagery. In total, 155 distinct combinations of habitat classes describing the geology and biology of the seafloor were identified from the source imagery.
Resumo:
A small proportion of harmful algae produce toxins which are harmful to human health. Strict monitoring programmes are in place within Ireland and the EU to effectively manage risk to human consumers of shellfish species that have accumulated marine biotoxins in their tissues. However, little is known about the impacts of HABs on shellfish health. This study used Solid Phase Adsorption and Toxin Tracking (SPATT) for the passive sampling of algal biotoxins at Lough Hyne Marine Nature Reserve in West Cork, Ireland. Spatial and temporal monitoring of the incidence of a wide range of lipophilic toxins was assessed over a 4-month period. Active sampling accumulated sufficient quantities of toxin for use in subsequent experimentation. In addition to commonly occurring Diarrhetic Shellfish Poisoning (DSP) toxins, Dinophysis toxin-1 and Pinnatoxin-G were both detected in the samples. This is the first identification of these latter two toxins in Irish waters. The effects of the DSP toxin okadaic acid (OA) were investigated on three shellfish species: Mytilus edulis, Ruditapes philippinarum and Crassostrea gigas. Histological examination of the gill, mantle and hepatopancreas tissues revealed varying intensity of damage depending both on the tissue type and the species involved. At the cellular level, flow cytometric analysis of the differential cell population distribution was assessed. No change in cell population distribution was observed in Mytilus edulis or Ruditapes philippinarum, however significant changes were observed in Crassostrea gigas granulocytes at the lower levels of toxin exposure. This indicated a chemically-induced response to OA. DNA fragmentation was measured in the haemolymph and hepatopancreas cells post OA-exposure in Mytilus edulis and Crassostrea gigas. A significant increase in DNA fragmentation was observed in both species over time, even at the lowest OA concentrations. DNA fragmentation could be due to genotoxicity of OA and/or to the induction of cell apoptosis.
Resumo:
Marine protected areas (MPAs) have been widely proposed for conservation purposes and as a tool for fisheries management. The Arrábida Marine Park is the first MPA in continental Portugal having a management plan, fully implemented since 2009. The main objective of this study was to evaluate the effect of protection measures on rocky reef fish assemblages and target invertebrates through before-after and control-effect (no-take vs. fished areas) underwater visual surveys and analysis of landings trends. Second, we used surveys before, during and after implementation of the management plan to understand fishers‟ preferences for fishing grounds and adaptation to the new rules, and evaluated the reserve effect through analysis of both ecological responses and fishing effort density. Third, we identified the main oceanographic drivers influencing the structure of reef fish assemblages and predicted the community structure for the last 50 years, in light of climatic change. Overall results suggest positive responses in biomass but not yet in numbers of some commercial species, with no effects on non-target species. The reserve effect is reinforced by the increase in landings of commercial species, despite increased fishing effort density in some areas, especially with octopus traps. Fishing grounds are mainly chosen based on the distribution of target species and associated habitats, but distance to port, weather conditions and safety also influence fishers‟ choices. Moreover, different fisheries respond differently to the protection measures, and within each fishery, individual fishers show distinct strategies, with some operating in a broader area whereas others keep preferred territories. Our results also show that wind stress and temperature are the main oceanographic drivers for rocky reef fish assemblages, with tropicalization of assemblages and polewards movements of species over the last 50 years consistent with temperature trends. We believe this study provides significant lessons for marine conservation and management of coastal systems.
Resumo:
Tese de Doutoramento, Ciências do Mar (Biologia Marinha)
Resumo:
Remains of large Pleistocene mammals always attract attention. Scientists and local people who work and live in the Laptev Sea Region find and collect various bones and fragments of large mammals. Some of them are brought to the Lena Delta Reserve. Mammal remains of the "Mammoth fauna" are the most common artifacts in the paleontological collection of the Lena Delta Reserve museum. The collection includes single bones, fragments of skeletons, bones with soft tissues and hair of Late Pleistocene and Holocene specimens. It consists of nearly 300 samples. The museum was created thanks to the enthusiasm of Dr. A. Gukov, the present director of the reserve. Employees of the reserve, school teachers, pupils and other interested people also contribute. The first specimens were collected in 1985. They were bison bones collected by Yarlykov Yu. A. on Makar Island (Yana Delta Region) near the Makar polar station; Efimov S. N. found horse and reindeer bones on the Myostakh Cape, Bykovsky Peninsula (Lena Delta Region). Mammoth and reindeer bones were collected by Gukov A. Yu. during the same year on Kurungnakh-Sise Island. Over more than 20 years many people have presented their finds to the reserve. These are samples from different islands of the Lena Delta Region, from the New Siberian Islands, from the Yana Delta Region, and from the southern coasts of the Laptev and East Siberian Seas. Most of the collection consists of bones from the Bykovsky Peninsula (about 100 samples) as well as from the islands of the Lena Delta Region. Unfortunately not all samples have exact information about their origins or is geological information available for all finds. It is typical for this exhibition that the finds were collected by amateurs (not during geological or paleontological expeditions). A considerable portion of the collection consists of finds of Dr. A. Gukov from different locations within the Lena Delta Reserve. In 2001 Dr. A. Sher delivered about 40 samples from the Bykovsky Peninsula (Mamontovy Khayata) to the museum.
Resumo:
Description based on: 1978; title from cover.
Resumo:
The Great Barrier Reef Marine Park, an area almost the size , of Japan, has a new network of no-take areas that significantly improves the protection of biodiversity. The new marine park zoning implements, in a quantitative manner, many of the theoretical design principles discussed in the literature. For example, the new network of no-take areas has at least 20% protection per bioregion, minimum levels of protection for all known habitats and special or unique features, and minimum sizes for no-take areas of at least 10 or 20 kat across at the smallest diameter Overall, more than 33% of the Great Barrier Reef Marine Park is now in no-take areas (previously 4.5%). The steps taken leading to this outcome were to clarify to the interested public why the existing level of protection wets inadequate; detail the conservation objectives of establishing new no-take areas; work with relevant and independent experts to define, and contribute to, the best scientific process to deliver on the objectives; describe the biodiversity (e.g., map bioregions); define operational principles needed to achieve the objectives; invite community input on all of The above; gather and layer the data gathered in round-table discussions; report the degree of achievement of principles for various options of no-take areas; and determine how to address negative impacts. Some of the key success factors in this case have global relevance and include focusing initial communication on the problem to be addressed; applying the precautionary principle; using independent experts; facilitating input to decision making; conducting extensive and participatory consultation; having an existing marine park that encompassed much of the ecosystem; having legislative power under federal law; developing high-level support; ensuring agency Priority and ownership; and being able to address the issue of displaced fishers.
Resumo:
Human exploitation has drastically reduced the abundance and distribution of several marine fish and invertebrate populations through overfishing and habitat destruction. Restocking can potentially mitigate these impacts and help to reconstitute depleted stocks but genetic repercussions must be considered. In the present study, the degree of genetic similarity between white seabream (Diplodus sargus Linnaeus 1758) individuals reared for restocking purposes and the receiving population in the Gulf of Castellammare fishery reserve (Sicily, Italy) was assessed using microsatellites. We also inferred the spatial pattern of the genetic structure of D. sargus and connectivity along Sicilian coasts. The farmed population showed significant heterozygosity deficiency in 6 loci and an important reduction in the number of alleles, which could indicate an incipient inbreeding. Both the farmed population and the target one for restocking (Castellammare fishery reserve), showed high and significant values of genetic differentiation due to different allele frequencies, number of privative alleles and total number of alleles. These findings indicate a low degree of genetic similarity between both populations, therefore this restocking initiative is not advisable. The genetic connectivity pattern, highly consistent with oceanographic currents, identified two distinct metapopulations of white seabream around Sicily. Thus it is recommended to utilize broods from the same metapopulation for restocking purposes to provide a better genetic match to the wild populations.
Resumo:
Studies that combine both the ecological responses of marine species and protection measures with movement patterns and habitat use are of major importance in order to better understand the performance of marine protected areas (MPA) and how species respond to their implementation. However, few studies have assessed MPA performance by relating local individual movement patterns and the observed reserve effects. In this study, we combined acoustic telemetry with abundance estimates to study the early effects of a recently established small coastal MPA on the local populations of white seabream. The results show that even small, recently established coastal MPAs can increase the abundance and biomass of commercial fish species, provided that target species have small home ranges and exhibit high site fidelity.
Resumo:
Brucite [Mg(OH)2] microbialites occur in vacated interseptal spaces of living scleractinian coral colonies (Acropora, Pocillopora, Porites) from subtidal and intertidal settings in the Great Barrier Reef, Australia, and subtidal Montastraea from the Florida Keys, United States. Brucite encrusts microbial filaments of endobionts (i.e., fungi, green algae, cyanobacteria) growing under organic biofilms; the brucite distribution is patchy both within interseptal spaces and within coralla. Although brucite is undersaturated in seawater, its precipitation was apparently induced in the corals by lowered pCO2 and increased pH within microenvironments protected by microbial biofilms. The occurrence of brucite in shallow-marine settings highlights the importance of microenvironments in the formation and early diagenesis of marine carbonates. Significantly, the brucite precipitates discovered in microenvironments in these corals show that early diagenetic products do not necessarily reflect ambient seawater chemistry. Errors in environmental interpretation may arise where unidentified precipitates occur in microenvironments in skeletal carbonates that are subsequently utilized as geochemical seawater proxies.