925 resultados para Maria Cristina, Queen, consort of Ferdinand II, King of the Two Sicilies, 1812-1836.
Resumo:
Non-perforating abomasal lesions are a considerable problem affecting more than half the population of veal calves. The objective of the present study was to assess the prevalence of pyloric and fundic abomasal lesions in Swiss veal calves at slaughter and to compare the occurrence of non-perforating abomasal lesions between two different production programs ('Naturafarm' and 'conventional'). 'Conventional'-production settings met the minimal standards as defined by the Swiss animal welfare legislation, whereas 'Naturafarm' production complied with increased animal welfare requirements. In order to identify risk factors for the development of abomasal lesions, information on management, housing, and feeding was obtained by a questionnaire. A total of 125 abomasa were randomly selected in one large abattoir. They were examined macroscopically, and the occurence of lesions in either the fundic or pyloric region of the abomasum was recorded separately. Animals raised in the 'conventional'-production setting revealed a significantly higher prevalence of lesions in the fundic part. Factors significantly affecting the prevalence of non-perforating lesions in the fundic part were the 'conventional'-production environment, including missing access to an outside pen, missing access to water and straw as the only roughage, feeding by bucket and the liquid milk by-product Protofit in combination with the powder Sprayfit.
Resumo:
The distribution processes of chlorin e6 (CE) and monoaspartyl-chlorin e6 (MACE) between the outer and inner phospholipid monolayers of 1,2-dioleoyl-phosphatidylcholine (DOPC) vesicles were monitored by 1H NMR spectroscopy through analysis of chemical shifts and line widths of the DOPC vesicle resonances. Chlorin adsorption to the outer vesicle monolayer induced changes in the DOPC 1H NMR spectrum. Most pronounced was a split of the N-methyl choline resonance, allowing for separate analysis of inner and outer vesicle layers. Transbilayer distribution of the chlorin compounds was indicated by time-dependent characteristic spectral changes of the DOPC resonances. Kinetic parameters for the flip-flop processes, that is, half-lives and rate constants, were obtained from the experimental data points. In comparison to CE, MACE transbilayer movement was significantly reduced, with MACE remaining more or less attached to the outer membrane layer. The distribution coefficients for CE and MACE between the vesicular and aqueous phase were determined. Both CE and MACE exhibited a high affinity for the vesicular phase. For CE, a positive correlation was found between transfer rate and increasing molar ratio CE/DOPC. Enhanced membrane rigidity induced by increasing amounts of cholesterol into the model membrane was accompanied by a decrease of CE flip-flop rates across the membrane. The present study shows that the movement of porphyrins across membranes can efficiently be investigated by 1H NMR spectroscopy and that small changes in porphyrin structure can have large effects on membrane kinetics.
Resumo:
Site 536 terminated in a shallow-water dolomite of unknown age. Paleomagnetic measurements combined with strontium isotope analyses suggest that the dolomite was deposited in the Middle Jurassic to Early Cretaceous time interval. However, the assumptions required to reach this determination make these results less than conclusive.
Resumo:
In this paper, we aim to prove, firstly, that the argument of the excess of complexity is not a whim. We will focous our attention on a particular and widespread case within the Tool Box, word processors, and on the most widely sold products inside this category respectively, the one a few years ago, the other at the present moment: WordStar y WordPerfect. The aspect of their complexity we are interested in is their user interface, because in the first place it is the aspect that most influences the human job.
Resumo:
The normal function of human intercellular adhesion molecule-1 (ICAM-1) is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 binds to leukocyte function-associated antigen (LFA-1) or macrophage-1 antigen (Mac-1). However, ICAM-1 is also used as a receptor by the major group of human rhinoviruses and is a catalyst for the subsequent viral uncoating during cell entry. The three-dimensional atomic structure of the two amino-terminal domains (D1 and D2) of ICAM-1 has been determined to 2.2-Å resolution and fitted into a cryoelectron microscopy reconstruction of a rhinovirus–ICAM-1 complex. Rhinovirus attachment is confined to the BC, CD, DE, and FG loops of the amino-terminal Ig-like domain (D1) at the end distal to the cellular membrane. The loops are considerably different in structure to those of human ICAM-2 or murine ICAM-1, which do not bind rhinoviruses. There are extensive charge interactions between ICAM-1 and human rhinoviruses, which are mostly conserved in both major and minor receptor groups of rhinoviruses. The interaction of ICAMs with LFA-1 is known to be mediated by a divalent cation bound to the insertion (I)-domain on the α chain of LFA-1 and the carboxyl group of a conserved glutamic acid residue on ICAMs. Domain D1 has been docked with the known structure of the I-domain. The resultant model is consistent with mutational data and provides a structural framework for the adhesion between these molecules.
Resumo:
In the retina, the glutamate transporter GLAST is expressed in Müller cells, whereas the glutamate transporter GLT-1 is found only in cones and various types of bipolar cells. To investigate the functional role of this differential distribution of glutamate transporters, we have analyzed GLAST and GLT-1 mutant mice. In GLAST-deficient mice, the electroretinogram b-wave and oscillatory potentials are reduced and retinal damage after ischemia is exacerbated, whereas GLT-1-deficient mice show almost normal electroretinograms and mild increased retinal damage after ischemia. These results demonstrate that GLAST is required for normal signal transmission between photoreceptors and bipolar cells and that both GLAST and GLT-1 play a neuroprotective role during ischemia in the retina.
Resumo:
The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.
Resumo:
Changes in DNA methylation during tobacco pollen development have been studied by confocal fluorescence microscopy using a monoclonal anti-5-methylcytosine (anti-m5C) antibody and a polyclonal anti-histone H1 (anti-histone) antibody as an internal standard. The specificity of the anti-m5C antibody was demonstrated by a titration series against both single-stranded DNA and double-stranded DNA substrates in either the methylated or unmethylated forms. The antibody was found to show similar kinetics against both double- and single-stranded DNA, and the fluorescence was proportional to the amount of DNA used. No signal was observed with unmethylated substrates. The extent of methylation of the two pollen nuclei remained approximately constant after the mitotic division that gave rise to the vegetative and generative nuclei. However, during the subsequent development of the pollen, the staining of the generative nucleus decreased until it reached a normalized value of \documentclass[12pt]{minimal} \usepackage{wasysym} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\frac{1}{5}\end{equation*}\end{document} of that of the vegetative nucleus. The use of a confocal microscope makes these data independent of possible focusing artefacts. The anti-histone antibody was used as a control to show that, while the antibody staining directed against 5-methylcytosine changed dramatically during pollen maturation, the histone signal did not. We observed the existence of structural dimorphism amongst tobacco pollen grains, the majority having three pollen apertures and the rest with four. However, the methylation changes observed occurred to the same extent in both subclasses.
Resumo:
Kinesin is a processive motor protein: A single molecule can walk continuously along a microtubule for several micrometers, taking hundreds of 8-nm steps without dissociating. To elucidate the biochemical and structural basis for processivity, we have engineered a heterodimeric one-headed kinesin and compared its biochemical properties to those of the wild-type two-headed molecule. Our construct retains the functionally important neck and tail domains and supports motility in high-density microtubule gliding assays, though it fails to move at the single-molecule level. We find that the ATPase rate of one-headed kinesin is 3–6 s−1 and that detachment from the microtubule occurs at a similar rate (3 s−1). This establishes that one-headed kinesin usually detaches once per ATP hydrolysis cycle. Furthermore, we identify the rate-limiting step in the one-headed hydrolysis cycle as detachment from the microtubule in the ADP⋅Pi state. Because the ATPase and detachment rates are roughly an order of magnitude lower than the corresponding rates for two-headed kinesin, the detachment of one head in the homodimer (in the ADP⋅Pi state) must be accelerated by the other head. We hypothesize that this results from internal strain generated when the second head binds. This idea accords with a hand-over-hand model for processivity in which the release of the trailing head is contingent on the binding of the forward head. These new results, together with previously published ones, allow us to propose a pathway that defines the chemical and mechanical cycle for two-headed kinesin.
Resumo:
It has been proved that, during anaerobic biosynthesis of the corrin macrocycle, the two-carbon fragment excised from the precursor, precorrin-3, is acetaldehyde, which originates from C-20 and its attached methyl group. This apparently contradictory finding is rationalized in terms of the subsequent enzymatic oxidation of acetaldehyde to acetic acid, which was previously regarded as the volatile fragment released by the action of the biosynthetic enzymes of Propionibacterium shermanii. The observation that acetaldehyde (rather than acetic acid) is extruded during anaerobic B12 synthesis is in full accord with the structure of factor IV, a new intermediate on the pathway.