959 resultados para Mammary Epithelial-cells
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.
Resumo:
The fungal strain Paracoccidioides brasiliensisremains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensismolecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensisuses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.
Resumo:
Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.
Resumo:
The intestinal immune system hasthe complex task to protect the sterilecore of the organism against invasion.Most of invasive enterobacteria targetintestinal epithelial cells (IEC) inducingmajor damages to the mucosa.Shigella flexneri, by invading IECand inducing inflammatory responsesof the colonic mucosa, causes bacillarydysentery, a bloody diarrhea thatis endemic worldwide. The mechanismof entry of this bacterium is stilla matter of debate. Mcells participatingin sampling antigens from the gutlumen through Peyers patches arecommonly considered as the primarysite of entry of the bacteria. Once inthe lamina propria, Shigella can invadeIEC via their basolateral poleand spread from cell-to-cell leading tomassive tissue destruction. More recently,data are accumulating demonstratingthat bacteria can also enter thelamina propria directly via IEC, underscoringIEC as another gate of entry.In addition, the protective role ofsecretory IgA (SIgA) produced byplasmocytes of the lamina propria hasbeen established in shigellosis contextbut few is known about its role inmaintaining IEC monolayer integrity.Here, the impact of the bacterium wasstudied using polarized CaCo 2 cellmonolayer apically infected with avirulent strain of S. flexneri eitheralone or complexed with its cognateanti LPS SIgA. Parameters associatedwith the infection process includingcytokine measurements (IL-8, IL-18)and laser scanning confocal microscopydetection of Zonula Occludens-1, a tight junction (TJ) protein werestudied.We demonstrate that bacteriaare able to infect IEC through theirluminal-like pole as well, inducingthe complete disruption of TJ and thedestruction of the whole reconstitutedCaCo-2 cell monolayer. SIgA uponneutralization of bacteria led to themaintenance of TJ supporting IEC integrity,and the modulation of cytokinereleases. Together with anti-inflammatoryproperties of SIgA, thefact that apical bacteria can damagethe IEC without the intervention ofother cells such as Mcells offers newpossibilities in understanding thepathogenic mechanisms involved inshigellosis.
Resumo:
Abstract : Breast cancer incidence rates have increased over the past hundred years, in particular, in Western industrial countries and they continue to rise worldwide. Breast cancer risk has been linked to life exposure to endogenous and exogenous estrogens, and there is increasing concern that exposure to endocrine disruptors which are increasingly accumulating in our environment may also have a role. Using the mouse as model, I have analyzed the physiological role of estrogen signaling in mammary gland development. I have shown that estrogen signaling through the estrogen receptor alpha (ERα) in the mammary epithelium is required for ductal morphogenesis during puberty. Moreover, I have demonstrated that estrogens induce proliferation of mammary epithelial cells through a paracrine mechanism. The presence of estrogen signaling is essential cell intrinsically via ERα or ERβ for the terminal differentiation into milk secreting cells during pregnancy. Furthermore, I have examined how perinatal exposure to the estrogenic plasticizer bisphenol A (BPA) found ubiquitously in consumer goods such as baby bottles formula and beverage containers affects the normal mammary gland development and possibly predispose the mammary gland to tumorigenesis. I have found that C57b16 mice that were exposed, via their drinking water, to several BPA doses ranging from 0.025µg/kg/day to 250µg/kg/day exhibits delayed terminal end bud formation and consequently the ductal outgrowth. Later in life, the mice that were exposed in utero to BPA displayed an increased number of mammary epithelial cells. Acute exposure of 3-week-old mice to BPA can alter gene expression levels of an important estrogen target gene, amphiregulin. Taken together these data are compatible with a scenario in which perinatal BPA exposure may alter mammary gland development by affecting developmental signaling pathways. Résumé : Les taux d'incidence des cancers du sein ont augmenté au cours des cent dernières années en particulier dans les pays industriels occidentaux et ils continuent d'augmenter dans le monde entier. Le risque du cancer du sein a été corrélé à l'exposition au cours de la vie aux oestrogènes endogènes et exogènes. Il y a une préoccupation croissante concernant l'exposition aux perturbateurs endocriniens qui ne cessent de s'accumulent dans notre environnement et qui peuvent également avoir un rôle dans l'augmentation des cancers du sein. En utilisant le modèle de souris, j'ai analysé le rôle physiologique de la voie de signalisation à l'oestrogène dans le développement mammaire. J'ai prouvé que l'oestrogène par l'intermédiaire de son récepteur alpha (ERα) est indispensable dans l'épithélium pour la morphogénèse du système canalaire pendant la puberté. De plus, j'ai démontré que les oestrogènes induisent la prolifération des cellules épithéliales mammaires par un mécanisme paracrine. La présence de la voie de signalisation à l'oestrogène est essentielle de manière intrinsèque à la cellule par l'intermédiaire d'ERα ou ERβ pour la différentiation terminale des cellules épithéliales en cellules sécrétrices de lait pendant la grossesse. En outre, j'ai examiné comment l'exposition périnatale au bisphénol A (BPA), un plastifiant présentant des propriétés ostrogéniques et omniprésent dans divers produits d'usage courant tels que les biberons des bébés et les récipients en plastique, affecte le développement de la glande mammaire et prédispose probablement celle-ci à la tumorigénèse. J'ai constaté que l'exposition périnatale à BPA retarde la formation des bourgeons terminaux et par conséquent la croissance du système canalaire. Plus tard dans la vie, les souris qui ont été exposées dans l'utérus au BPA ont montré un plus grand nombre de cellules épithéliales mammaires. L'exposition aiguë de souris âgées de 3 semaines au BPA perturbe le niveau d'expression d'un gène cible important de l'oestrogène, l'amphiregulin. Ces données sont compatibles avec un scénario dans lequel l'exposition périnatale au BPA peut changer le développement de la glande mammaire en affectant des voies de signalisation développementales.
Resumo:
The pro-inflammatory cytokine TNF-α and the female hormone estrogen have been implicated in the pathophysiology of two common gynecological diseases, endometriosis and endometrial adenocarcinoma. Here we describe a novel capacity of TNF-α to activate ER signaling in endometrial epithelial cells. TNF-α induced luciferase expression in the absence and presence of estradiol and also augmented expression of the estrogen-regulated genes c-fos, GREB1, and progesterone receptor. Furthermore, TNF-α mediated ER transcriptional activity is dependent on the Extracellular Regulated Kinase (ERK) 1/2 pathway. Co-treatment with a pure ER antagonist resulted in an inhibition of this TNF-α-induced ERE luciferase activity and gene expression, demonstrating that this cytokine signals through ERs. Additional investigations confirmed that TNF-α acts specifically via ERα. Taken together, these data provide a rationale for the potential use of inhibitors of TNF-α and estrogen production/activity in combination for the treatment of endometrial pathologies.
Resumo:
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Resumo:
Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.
Resumo:
Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.
Resumo:
The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of the thymic medulla express stratified-epithelium markers, interpreted as promiscuous gene expression. Here we show that the thymus of the rat contains a population of clonogenic TECs that can be extensively cultured while conserving the capacity to integrate in a thymic epithelial network and to express major histocompatibility complex class II (MHC II) molecules and Aire. These cells can irreversibly adopt the fate of hair follicle multipotent stem cells when exposed to an inductive skin microenvironment; this change in fate is correlated with robust changes in gene expression. Hence, microenvironmental cues are sufficient here to re-direct epithelial cell fate, allowing crossing of primitive germ layer boundaries and an increase in potency.
Resumo:
Interactions between Notch1 receptors on lymphoid progenitors and Delta-like 4 (DL4) ligands on cortical thymic epithelial cells (cTEC) are essential for T cell lineage commitment, expansion, and maturation in the thymus. Using a novel mAb against DL4, we show that DL4 levels on cTEC are very high in the fetal and neonatal thymus when thymocyte expansion is maximal but decrease dramatically in the adult when steady-state homeostasis is attained. Analysis of mutant mouse strains where thymocyte development is blocked at different stages indicates that lymphostromal interactions ("thymus crosstalk") are required for DL4 down-regulation on cTEC. Reconstitution of thymocyte development in these mutant mice further suggests that maturation of thymocytes to the CD4(+)CD8(+) stage and concomitant expansion are needed to promote DL4 down-regulation on cTEC. Collectively, our data support a model where thymic crosstalk quantitatively regulates the rate of Notch1-dependent thymopoiesis by controlling DL4 expression levels on cTEC.
Resumo:
Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 ± 12.0 nN (mean ± SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 µM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 µM, 30 min) and Rho kinase with Y-27632 (10 µM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung.