864 resultados para Maleic anhydride grafted reclaimed rubber
Resumo:
The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA
Resumo:
Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).
Resumo:
The chain structure, spherulite morphology, and theological property of LL-DPE-g-AA were studied by using electronspray mass spectroscopy, C-13-NMR, and rheometer. Experimental evidence proved that AA monomers grafted onto the LLDPE backbone formed multiunit AA branch chains. It was found that AA branch chains could hinder movement of the LLDPE main chain during crystallization. Spherulites of LLDPE became more anomalous because of the presence of AA branch chains. Rheological behavior showed that AA branch chains could act as an inner plasticizer at the temperature range of 170-200 degreesC, which made LLDPE-g-AA easy to further process. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The thesis describes utilisation of reclaimed rubber, Whole Tyre Reclaim (WTR) produced from bio non- degradable solid pollutant scrap and used tyres. In this study an attempt has made to optimize the substitution of virgin rubber with WTR in both natural and synthetic rubber compounds without seriously compromising the important mechanical properties. The WTR is used as potent source of rubber hydrocarbon and carbon black filler. Apart from natural rubber (NR), Butadiene rubber (BR), Styrene butadiene rubber (SBR), Acrylonitrile butadiene rubber (NBR) and Chloroprene rubber (CR) were selected for study, being the most widely used general purpose and specialty rubbers. The compatibility problem was addressed by functionalisation of WTR with maleic anhydride and by using a coupling agent Si69.The blends were systematically evaluated with respect to various mechanical properties. The thermogravimetric analyses were also carried out to evaluate the thermal stability of the blends.Mechanical properties of the blends were property and matrix dependant. Presence of reinforcing carbon black filler and curatives in the reclaimed rubber improved the mechanical properties with the exception of some of the elastic properties like heat build up, resilience, compression set. When WTR was blended with natural rubber and synthetic rubbers, as the concentration of the low molecular weight, depolymerised WfR was increased above 46-weight percent, the properties deteriorates.When WTR was blended with crystallizing rubbers such as natural rubber and chloroprene rubber, properties like tensile strength, ultimate elongation were decreased in presence of WTR. Where as in the case of blends of WTR with non-crystallizing rubbers reinforcement effect was more prominent.The effect of functionalisation and coupling agent was studied in three matrices having different levels of polarity(NBR, CR and SBR).The grafting of maleic anhydride on to WTR definitely improved the properties of its blends with NBR, CR and SBR, the effect being prominent in Chloroprene rubber.Improvement in properties of these blends could also achieved by using a coupling agent Si69. With this there is apparent plasticizing effect at higher loading of the coupling agent. The optimum concentration of Si69 was 1 phr for improved properties, though the improvements are not as significant as in the case of maleic anhydride grafting.Thermal stability of the blend was increased by using silane-coupling agent.
Resumo:
Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Resumo:
A novel nonionic surfactant, glycerol monostearic acid monomaleic acid diester (GMMD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene (LLDPE) with GMMD was carried out by using P-ray irradiation in a twin-screw extruder. Evidence of the grafting of GMMD, as well as its extent, was determined by FT-IR. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-GMMD was investigated by using differential scanning calorimety (DSC). Compared with neat LLDPE, the crystallization temperature (T,) of LLDPE-g-GMMD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of GMMD content. It showed that the arafted GMMD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-GMMD film. Accelerated dripping property of film samples was investigated. The dripping duration of LLDPE-g-GMMD film and commercial anti-fog dripping film at 60 degrees C were 52 days and 17 days, respectively.
Resumo:
Morphology, mechanical properties, and interfacial interaction of polyamide 1010/polypropylene (PA1010/ PP) blends compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA) were studied. It was found that the size of the PP domains, tensile and impact strength of ternary blends, and adhesion fracture energy between two layers of PA1010 and PP were all significantly dependent on the PP-g-GMA contents in the PP layer. Correlations between morphology and related properties were sought. The improvements in properties have been attributed to chemical and physical interaction occurring between PA1010 and PP-g-GMA. (C) 1997 Elsevier Science Ltd.
Resumo:
Grafting of acrylamido tertiary butyl sulfonic acid (ATBS) onto ethylene-polypropylene copolymer (EPM) was carried out by using a reactive processing method. The grafting copolymer was characterized by means of WAXD, FT-IR, ESCA, and DSC. Improved thermal stability was observed for graft copolymer. Effects of the monomer and the initiator concentrations, reactive temperature, and time on grafting degree were investigated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The morphology of polyamidelOlO/polypropylene blends was found to significantly depend upon the concentration of the compatibilizer[polypropylene-grafted-acrylic acid (PP-g-AA)]. A significant reduction in phase size was observed because of the interaction that existed between the PP-g-AA and polyamide. These interactions have been confirmed by several methods. The tensile mechanical properties and impact behavior of the prepared blends were investigated and correlated with scanning electron microscope (SEM) analysis of the fracture surfaces. It was found that PP-g-AA as the compatibilizer has a profound effect upon the properties of the blends. This behavior is attributed to a series of chemical and physico-chemical interactions taking place between the two components.
Resumo:
The thermal properties of ethylene-propylene copolymer grafted with glycidyl methacrylate (EP-g-GMA) were investigated by using differential scanning calorimetry (DSC). Compared to the plain ethylene-propylene copolymer (EP), peak values of melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, crystallization temperature (T-c) increased about 8-12 degrees C, and melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal and nonisothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of ungrafted sample is 1.6-1.8, and those of grafted samples are all above 2. The crystallization rates of propylene sequence in EP-g-GMA were faster than that in the plain EP and increased with increasing of grafted monomer content. It might be attributed to the results of rapid nucleation rate. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Heterogeneous immobilized ionic liquid catalysts were prepared via grafting of 1,3-dimethyl-3-(3-triethoxysilylpropyl)-imidazolium tetrafluoroborate or bist{(trifluoromethyl)sulfonyl} imide ([NTf2](-)) on silica supports with different surfaces and pore size. In addition to the adsorption-desorption isotherms of nitrogen at -196C, the catalysts were characterized by TG-DTA, XPS, DRIFTS, DR-UV-vis, NMR, and XRD techniques. The catalytic behavior was checked in the acylation of three different sulfonamines: benzenesulfonamine, p-nitrobenzene-sulfonamine, and p-methoxybenzene-sulfonamine with acetic acid, acetic anhydride and maleic anhydride. These tests confirmed the acid Lewis properties of these catalysts. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carboxy Terminated Liquid Natural Rubber (CTNR) was prepared by photochemical reaction using maleic anhydride and masticated natural rubber (NR). The use of CTNR as an adhesive in bonding rubber to rubber and rubber to metal was studied. The peel strengths and lap shear strengths of the adherends which were bonded using CTNR were determined. The effect of using a tri isocyanate with CTNR in rubber to metal bonding was also studied. It is found that CTNR can effectively be used in bonding rubber to rubber and rubber to mild steel.
Resumo:
One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.
Resumo:
Polyolefin based blends have tremendous commercial importance in view of their exceptional properties. In this study the interface of a biphasic polymer blend of PE (polyethylene) and PEO (polyethylene oxide) has been tailored to reduce the interfacial tension between the phases and to render finer morphology. This was accomplished by employing various strategies like addition of maleated PE (PE grafted maleic anhydride), immobilizing PE chains, ex situ, onto MWNTs by covalent grafting, and in situ grafting of PE chains onto MWNTs during melt processing. Multiwalled nanotubes (MWNTs) with different surface functional groups have been synthesized either a priori or were facilitated during melt mixing at higher temperature. NH2 terminated MWNTs were synthesized by grafting ethylene diamine (EDA) onto carboxyl functionalized carbon nanotubes (COOH(MWNTs) and further, was used to reactively couple with maleated PE to immobilize PE chains on the surface of MWNTs. The covalent coupling of maleated PE with NH2 terminated MWNTs was also realized in situ in the melt extruder at high temperature. Both NH2 terminated MWNTs and the in situ formed PE brush on MWNTs during melt mixing, revealed a significant improvement in the mechanical properties of the blend besides remarkably improving the dispersion of the minor phase (PEO) in the blends. Structural properties of the composites were evaluated and the tensile fractured morphology was assessed using scanning electron microscopy.