916 resultados para Maldi-tof Mass Spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, three kinds of snake venoms and lour kinds of enzymes (phospholipase A(2), fibrinolytic enzyme, arginine esterase and L-amino acid oxidase) isolated from the snake venom were analyzed. As the snake venom was different, the MALDI/TOF/MS showed difference, The MALDI/TOF/MS determination results could be affected Ly the concentrations of snake venom enzymes, And the mechanisms of desorption and ionization was also given in this study, By using MALDI/TOF/MS we obtained the accurate molecular weights and homogeneities of the enzymes. The apparent characteristics of the positive MALDI/TOF/MS of enzymes composed by two subunits were also given out, The results showed that MALDI/TOF/MS is an effective analytic method for discovering new components from snake venom complexes. And it is reliable to use this method to determine the molecular weights and purifies of protein molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic aryletherketone( sulfone) oligomers containing hexafluoroisopropylidene unit were characterized by matrix-assisted laser desorption ionization time-of-night mass spectrometry(MALDI-TOF-MS) using Na+ and Ag+ as cationization agents. The affinities of cyclic oligomers to the cation were studied. The analysis result showed that 1,8,9-dithranol, in the presence of silver trifluoroacetate, was very effective for the characterization of cyclic arylether ketone ( sulfone) containing hexafluoroisopropylidene unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The homogeneities and molecular weights of three arginine esterases from snake venom, which possessing therapeutic use in myocardial infarction, were determined and compared, MALDI-TOF-MS is possessed of high accuracy, high sensitivity and rapidity. MALDI-TOF-MS and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) can provide complementary and confirmatory results information. MALDI-TOF-MS can be directly used as an important method for the purification of snake venom complexes successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) spectra of four enzymes (PLA, AEase, Fibrolase, L-a.a. oxidase) in Agkistrodon blomhoffii Ussurensis venom, were given and interpreted. The experiment data showed that MALDI-TOF-MS can be used directly in enzyme analysis with high sensitivity and rapidity. In addition, the results were better than those from sodium dodecyl sulfate-polyacrylamide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to identify cyclic(aryl ether ketone) oligomers, using 2,5-dihydroxybenzoic acid as a matrix, and Na+ and K+ as cationization agents, The existence of different ring-sized cyclic oligomers up to 9 and their distribution were determined and compared with GPC results, The results indicated that MALDI-TOF MS was a powerful and rapid analytical tool for the cyclic oligomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized carbon nanotubes are tested as a matrix for analysis of small molecules by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Compared with nonoxidized carbon nanotubes, oxidized carbon nanotubes facilitate sample preparation because of their higher solubility in water. The matrix layer of oxidized carbon nanotubes is much more homogeneous and compact than that of nonoxidized carbon nanotubes. The efficiency of desorption/ionization for analytes and the reproducibility of peak intensities within and between sample spots are greatly enhanced on the surface of oxidized carbon nanotubes. The advantage of the oxidized carbon nanotubes in comparison with alpha-cyano-4-hydroxycinnamic acid (CCA) and carbon nanotubes is demonstrated by MALDI-TOF-MS analysis of an amino acid mixture. The matrix is successfully used for analysis of synthetic hydroxypropyl P-cyclodextrin, suggesting a great potential for monitoring reactions and for product quality control. Reliable quantitative analysis of jatrorrhizine and palmatine with a wide linear range (1-100 ng/mL) and good reproducibility of relative peak areas (RSD less than 10 %) is achieved using this matrix. Concentrations of jatrorrhizine (8.65 mg/mL) and palmatine (10.4 mg/mL) in an extract of Coptis chinensis Franch are determined simultaneously using the matrix and a standard addition method. (c) 2005 American Society for Mass Spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for environmental analysis has been mainly focused on qualitative analysis of high-mass molecules, such as toxins, humic acid, and microorganisms. Herein,we describe a novel MALDI-TOF-MS method with a matrix of oxidized carbon nanotubes for analysis of low-mass compounds in environmental samples. A number of chemicals in the environment were qualitatively analyzed by the present method, and it was found that most of them, especially the highly polar chemicals, were measurable with high sensitivity. With the intrinsic ability to measure high-mass chemicals, this method can compensate for the current shortage of methods for environmental analysis for the measurement of highly polar or high-mass chemicals. For sample analysis, arsenic speciation in Chinese traditional medicines was qualified and diphenylolpropane in water samples was quantified. With the relatively high tolerance of the method to interfering molecules, a simple pretreatment or even no pretreatment could be employed before MS detection. Furthermore, this method can be employed in a high-throughput format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach for the separation and identification of components in a traditional Chinese medicine Psoralea corylifolia was developed. Ion-exchange chromatography (IEC) was applied for the fractionation of P corylifolia extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further separated on an ODS column with detection of UV absorbance and atmospheric pressure chemical ionization mass spectrometer (APCI/MS), respectively, and also analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes. Totally more than 188 components in P. corylifolia extract were detected with this integrated approach, and 12 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS. The obtained analytical results not only demonstrated the powerful resolution of integration IEC fractionation with reversed-phase liquid chromatography (RPLC)-APCI/MS and MALDI-TOF/MS for analysis of compounds in a complex sample, but also exhibited the superiority of APCI/MS and MALDI-TOF/MS for identification of low-mass compounds, such as for study of traditional Chinese medicines (TCMs) and metabolome. (c) 2005 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hyphenated method for the isolation and identification of components in a traditional Chinese medicine of Honeysuckle was developed. Ion-exchange chromatography (IEC) was chosen for the fractionation of Honeysuckle extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further analyzed by reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer (RPLC-APCI/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes, respectively. It can be noted totally more than 117 components were detected by UV detector, APCI/MS and MALDI-TOF/MS in Honeysuckle extract except the, 145 components identified by MALDI-TOF/MS alone with this integrated approach, and 7 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS, respectively. The obtained analytical results not only indicated the approach of integration IEC fractionation with RPLC-APCI/MS and MALDI-TOF/MS is capable of analyzing complex samples, but also exhibited the potential power of the mass spectrometer in detection of low-mass compounds, such as traditional Chinese medicines (TCMs) and complex biological samples. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data are presented for a pH-adjustable liquid UV-matrix-assisted laser desorption ionization (MALDI) matrix for mass spectrometry analysis. The liquid matrix system possesses high analytical sensitivity within the same order of magnitude as that achievable by the commonly used solid UV-MALDI matrices such as 2,5-dihydroxybenzoic acid but with improved spot homogeneity and reproducibility. The pH of the matrix has been adjusted by the addition of up to 0.35% trifluoroacetic acid and up to 200 mM ammonium bicarbonate, achieving an on-target pH range of 3.5-8.6. Alteration of the pH does not seem to affect the overall sample signal intensity or signal-to-noise ratio achievable, nor does it affect the individual peptide ion signals from a mixture of peptides with varying isoelectric points (p1). In addition, the pH adjustment has allowed for the performance of a tryptic digest within the diluted pH-optimized liquid matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.