858 resultados para Magnesium Diecasting Alloys
Resumo:
In the present work, the effect of Cd on the microstructure, mechanical properties and general corrosion behaviour of AZ91C alloys was investigated. Addition of Cd was found not to be efficient in modifying/refining the microstructure or beta-phase. A morphology change in beta-phase from fine continuous precipitates to discontinuous beta-phase upon the addition of Cd was observed. A marginal increment in mechanical properties was observed. General corrosion behaviour was followed with weight loss measurements, potentiostatic polarisation studies and surface studies in 3.5% sodium chloride solution and 3.5% sodium chloride with 2% potassium dichromate solution. Cd addition deteriorated the corrosion behaviour of AZ91C. This behaviour was attributed to the formation of chunks of beta-phase upon the addition of Cd. AZ91C with refined beta-phase distribution, performed rather better in the NaCl solutions. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the effects of nanoscale ZnO reinforcement on the room temperature tensile and compressive response of monolithic Mg were studied. Experimental observations indicated strength properties improvement due to nanoscale ZnO addition. A maximum increment in tensile yield strength by similar to 55% and compressive yield strength by 90% (with reduced tension-compression asymmetry) was achieved when 0.8 vol.% ZnO nanoparticles were added to Mg. While the fracture strain values under tensile loads were found to increase significantly (by similar to 95%, in case of Mg-0.48ZnO), it remained largely unaffected under compressive loads. The microstructural characteristics studied in order to comprehend the mechanical response showed significant grain refinement due to grain boundary pinning effect of nano-ZnO particles which resulted in strengthening of Mg. Texture analysis using X-ray and EBSD methods indicated weakening of basal fibre texture in Mg/ZnO nanocomposites which contributed towards the reduction in tension-compression yield asymmetry and enhancement in tensile ductility when compared to pure Mg. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Magnesium and its alloys are an emerging class of resorbable materials for orthopedic and cardiovascular applications. The typical strategy underlying the development of these materials involves the control of material processing routes and the addition of alloying elements. Crystallographic texture is known to control bulk mechanical as well as surface properties. However, its role in determining the properties of magnesium for implant materials has not been well studied. In this work, an extruded rod of pure magnesium was cut in multiple directions to generate samples with different textures. It was found that texture significantly affected the strength and ductility of magnesium. Corrosion rates in Hank's solution decreased with the increased presence of low energy basal planes at the surface. In vitro cell studies revealed that changes in texture did not induce cytotoxicity. Thus, the control of texture in magnesium based implants could be used to tailor the mechanical properties and the resorption rates without compromising cytocompatibility. This study elucidates the importance of texture in the use of magnesium as a resorbable biomaterial.
Resumo:
The precipitation behavior of the magnesium alloy WE43 (Mg-4%Y-2.3%Nd-0.5%Zr) has been studied in strained and unstrained conditions using Transmission Electron Microscopy (TEM). Ageing treatments were carried out at three temperatures, namely 210 degrees C, 230 degrees C and 260 degrees C. The precipitation sequence during static aging of solution treated (ST) samples has been identified as ST —> beta'' —> beta' followed by the formation of beta(1) and equilibrium beta precipitates form after very long ageing periods. Dynamic precipitation was observed during high temperature deformation, leading to the formation of beta' and intermediate beta(1) precipitates. The strained samples, when further heat treated, resulted in the transformation of beta(1) into beta equilibrium precipitates. The sequence of dynamic precipitation is ST —> beta(1) —> beta and ST —> beta'. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The microstructures and mechanical properties of Mg-6Zn-5Al-4Gd-1RE (RE = Ce or Y) alloys were investigated. The addition of Ce or Y obviously refines the grain size for the Mg-6Zn-5Al-4Gd-based alloy, while the Y element has a better refining effect. The Ce and Y show different grain-refining mechanisms: Ce addition mostly promotes the growth of secondary dendrite, while Y addition mainly increases the heterogeneous nucleation sites.
Resumo:
The Mg-3Al-3RE alloys (RE, the cerium-rich or the yttrium-rich misch metal) were smelted in a resistance furnace under the protective flux from the Mg-RE master alloys and pure magnesium ingots. The microstructure and mechanical properties of samples prepared by steel mould casting method were investigated.
Resumo:
The Mg-8Gd-0.6Zr-xHo (x = 1, 3 and 5, mass%) alloys were prepared by casting technology, and structures, aging strengthening mechanism and mechanical properties of the alloys were investigated. The age behaviors and the mechanical properties are improved by adding Ho addition. The structures of the alloys are characterized by the present of rosette-shaped equiaxed grains. The peak hardness value of the Mg-8Gd-0.6Zr-3Ho alloy is 100 Hv, which is about 30% higher than that of Mg-8Gd-0.6Zr alloy.
Resumo:
The influence of the addition of mischmetal (MM) and tin (Sn) (total content of mischmetal and tin = 4 wt.%) on the microstructure, aging behavior and mechanical properties of Mg-6Zn-5Al-based alloys has been investigated. The microstructure of the as-cast alloys consists of alpha-Mg. Mg-32(Al,Zn)(49), Al2Mg5Zn2, Mg2Sn and Al2MMZn2 phases, and the morphology of these intermetallic phases varies with different MM and Sri additions.
Resumo:
Mg-8Gd-2Y-Nd-0.3Zn (wt%) alloy was prepared by the high pressure die-cast technique. The microstructure, mechanical properties in the temperature range from room temperature to 573 K, and strengthening mechanism were investigated. It was confirmed that the Mg-Gd-based alloy with high Gd content exhibited outstanding die-cast character. The die-cast alloy was mainly composed of small cellular equiaxed dendrites and the matrix. The long lamellar-shaped stacking compound of Mg3X (X: Gd, Y, Nd, and Zn) and polygon-shaped.
Resumo:
Mg-5Al-0.4Mn-xNd (x=0, 1, 2 and 4wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results demonstrated that Al11Nd3 phase was formed and mainly aggregated along the grain boundaries with the addition of Nd. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content.
Resumo:
A wear mechanism map of uncoated high-speed steel (HSS) tools was constructed under the conditions of dry-drilling die-cast magnesium alloys. Three wear mechanisms appear in the map based on the microanalysis of drilled HSS tools by SEM, including adhesive wear, abrasive wear and diffusion wear. In the map, there exists a minor wear region which is called "safety zone". This wear mechanism map will be a good reference for choosing suitable drilling parameters when drilling die-cast magnesium alloys.
Resumo:
The electrochemical corrosion behavior of Mg-6Al-0.4Mn and Mg-6Al-4RE-0.4Mn (RE = Mischmetal) alloys is investigated in 3.5% NaCl solution. The results of corrosion process, polarization behavior, and electrochemical impedance spectroscopy of the alloys reveal that Mg-6Al-4RE-0.4Mn exhibits enhanced corrosion resistance. The addition of RE stabilizes the solid solution and modifies the passive film through a finer microstructure.
Resumo:
Mg-8Gd-0.6Zr-1RE (RE = La or Ce, wt.%) alloys were prepared by casting. The microstructures, age hardening behavior and mechanical properties were investigated. The results show that the addition of 1 wt.% La or Ce to a Mg-8Gd-0.6Zr alloy reduces the dendrite arm spacing and slightly improves the mechanical properties and age hardening response.
Resumo:
Microstructure and mechanical properties of Mg-4.5Zn-xNd (x = 0, 1 and 2, wt%) alloys heat-treated at 603 K for 2 It have been investigated. T-phase (an Mg-Zn-Nd ternary phase) was observed in the Nd containing alloys. The optimal mechanical properties were obtained in the Mg-4.5Zn-1Nd alloy, and the ultimate tensile strength and yield strength were 228 and 79 MPa, respectively. Through comparing with the Mg-4.5Zn alloy, the increments of ultimate tensile strength and yield strength were 51 and 17 MPa.