999 resultados para Machine costs
Resumo:
Research is now emerging which exposes the significance and extent to which even small shifts in the regulatory assessment period, and other factors, affect housing affordability. It suggests that the extent of its significance has not been hitherto completely demonstrated.
Resumo:
This paper discusses the effects of thyristor controlled series compensator (TCSC), a series FACTS controller, on the transient stability of a power system. Trajectory sensitivity analysis (TSA) has been used to measure the transient stability condition of the system. The TCSC is modeled by a variable capacitor, the value of which changes with the firing angle. It is shown that TSA can be used in the design of the controller. The optimal locations of the TCSC-controller for different fault conditions can also be identified with the help of TSA. The paper depicts the advantage of the use of TCSC with a suitable controller over fixed capacitor operation.
Resumo:
With increasing pressure to deliver environmentally friendly and socially responsible highway infrastructure projects, stakeholders are also putting significant focus on the early identification of financial viability and outcomes for these projects. Infrastructure development typically requires major capital input, which may cause serious financial constraints for investors. The push for sustainability has added new dimensions to the evaluation of highway projects, particularly on the cost front. Comprehensive analysis of the cost implications of implementing place sustainable measures in highway infrastructure throughout its lifespan is highly desirable and will become an essential part of the highway development process and a primary concern for decision makers. This paper discusses an ongoing research which seeks to identify cost elements and issues related to sustainable measures for highway infrastructure projects. Through life-cycle costing analysis (LCCA), financial implications of pursuing sustainability, which are highly concerned by the construction stakeholders, have been assessed to aid the decision making when contemplating the design, development and operation of highway infrastructure. An extensive literature review and evaluation of project reports from previous Australian highway projects was first conducted to reveal all potential cost elements. This provided the foundation for a questionnaire survey, which helped identify those specific issues and related costs that project stakeholders consider to be most critical in the Australian industry context. Through the survey, three key stakeholders in highway infrastructure development, namely consultants, contractors and government agencies, provided their views on the specific selection and priority ranking of the various categories. Findings of the survey are being integrated into proven LCCA models for further enhancement. A new LCCA model will be developed to assist the stakeholders to evaluate costs and investment decisions and reach optimum balance between financial viability and sustainability deliverables.
Resumo:
Neural networks (NNs) are discussed in connection with their possible use in induction machine drives. The mathematical model of the NN as well as a commonly used learning algorithm is presented. Possible applications of NNs to induction machine control are discussed. A simulation of an NN successfully identifying the nonlinear multivariable model of an induction-machine stator transfer function is presented. Previously published applications are discussed, and some possible future applications are proposed.
Resumo:
The design and implementation of a high-power (2 MW peak) vector control drive is described. The inverter switching frequency is low, resulting in high-harmonic-content current waveforms. A block diagram of the physical system is given, and each component is described in some detail. The problem of commanded slip noise sensitivity, inherent in high-power vector control drives, is discussed, and a solution is proposed. Results are given which demonstrate the successful functioning of the system
Resumo:
Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.
Resumo:
Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.