956 resultados para MSC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge based urban development (KBUD) is a new paradigm in urban planning tailoring to the era of knowledge economy. It aims mainly to assist a contemporary city to promote a more sustainable socio-spatial order. The paper reports on the investigation of KBUD initiative in Malaysia which is manifested through the establishment of a project called Multimedia Super Corridor (MSC). MSC Malaysia aims to attract knowledge workers and industries to invest and operate within the area by creating a world class urban corridor with state-of-the-art multimedia infrastructure, efficient transportation system and an attractive living environment. Based on documents analysis and interviews, this paper analyses the strategies, implementations, and achievements of KBUD initiative in Cyberjaya, being the leading intelligent city of the unique Malaysia’s KBUD project-MSC Malaysia. A critical evaluation is made to assess the achievements of MSC, by looking at the physical changes after about ten years since its official launching. The findings recommend some valuable lessons for other cities that strive to develop KBUD strategies, strengthen their sustainable socio-spatial policies, and seek a global recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membranes prepared from Bombyx mori silk fibroin have shown potential as a substrate for human limbal epithelial (L-EC) and stromal cell cultivation. Here we present fibroin as a dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. We have compared the growth and phenotype of L-EC on non-porous versus porous fibroin membranes. Furthermore, we have compared the growth of limbal mesenchymal stromal cells (L-MSC) in either serum-supplemented medium or the MesenCult-XF® culture system within fibroin fibrous mats. The co-culture of L-EC and L-MSC in fibroin dual-layer constructs was also examined. L-EC on porous membranes displayed a squamous monolayer; in contrast, L-EC on non-porous fibroin appeared cuboidal and stratified. Both constructs maintained evidence of corneal phenotype (cytokeratin 3/12) and distribution of ΔNp63+ progenitor cells. L-MSC cultivated within fibroin fibrous mats in serum-supplemented medium contained less than 64% of cells expressing the characteristic MSC phenotype of CD73+CD90+CD105+ after two weeks, compared with over 81% in MesenCult-XF® medium. Dual-layer fibroin scaffolds consisting of L-EC and L-MSC maintained a similar phenotype as on the separate layers. These results support the feasibility of a 3D engineered limbus constructed from B. mori silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs. Keywords

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epithelium of the corneolimbus contains stem cells for regenerating the corneal epithelium. Diseases and injuries affecting the limbus can lead to a condition known as limbal stem cell deficiency (LSCD), which results in loss of the corneal epithelium, and subsequent chronic inflammation and scarring of the ocular surface. Advances in the treatment of LSCD have been achieved through use of cultured human limbal epithelial (HLE) grafts to restore epithelial stem cells of the ocular surface. These epithelial grafts are usually produced by the ex vivo expansion of HLE cells on human donor amniotic membrane (AM), but this is not without limitations. Although AM is the most widely accepted substratum for HLE transplantation, donor variation, risk of disease transfer, and rising costs have led to the search for alternative biomaterials to improve the surgical outcome of LSCD. Recent studies have demonstrated that Bombyx mori silk fibroin (hereafter referred to as fibroin) membranes support the growth of primary HLE cells, and thus this thesis aims to explore the possibility of using fibroin as a biomaterial for ocular surface reconstruction. Optimistically, the grafted sheets of cultured epithelium would provide a replenishing source of epithelial progenitor cells for maintaining the corneal epithelium, however, the HLE cells lose their progenitor cell characteristics once removed from their niche. More severe ocular surface injuries, which result in stromal scarring, damage the epithelial stem cell niche, which subsequently leads to poor corneal re-epithelialisation post-grafting. An ideal solution to repairing the corneal limbus would therefore be to grow and transplant HLE cells on a biomaterial that also provides a means for replacing underlying stromal cells required to better simulate the normal stem cell niche. The recent discovery of limbal mesenchymal stromal cells (L-MSC) provides a possibility for stromal repair and regeneration, and therefore, this thesis presents the use of fibroin as a possible biomaterial to support a three dimensional tissue engineered corneolimbus with both an HLE and underlying L-MSC layer. Investigation into optimal scaffold design is necessary, including adequate separation of epithelial and stromal layers, as well as direct cell-cell contact. Firstly, the attachment, morphology and phenotype of HLE cells grown on fibroin were directly compared to that observed on donor AM, the current clinical standard substrate for HLE transplantation. The production, transparency, and permeability of fibroin membranes were also evaluated in this part of the study. Results revealed that fibroin membranes could be routinely produced using a custom-made film casting table and were found to be transparent and permeable. Attachment of HLE cells to fibroin after 4 hours in serum-free medium was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. While HLE cultured on AM displayed superior stratification, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (cytokeratin pair 3/12 expression; CK3/12) and displayed a comparable number and distribution of ÄNp63+ progenitor cells to that seen in cultures grown on AM. These results confirm the suitability of membranes constructed from silk fibroin as a possible substrate for HLE cultivation. One of the most important aspects in corneolimbal tissue engineering is to consider the reconstruction of the limbal stem cell niche to help form the natural limbus in situ. MSC with similar properties to bone marrow derived-MSC (BM-MSC) have recently been grown from the limbus of the human cornea. This thesis evaluated methods for culturing L-MSC and limbal keratocytes using various serum-free media. The phenotype of resulting cultures was examined using photography, flow cytometry for CD34 (keratocyte marker), CD45 (bone marrow-derived cell marker), CD73, CD90, CD105 (collectively MSC markers), CD141 (epithelial/vascular endothelial marker), and CD271 (neuronal marker), immunocytochemistry (alpha-smooth muscle actin; á-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis), and co-culture experiments with HLE cells. While all techniques supported to varying degrees establishment of keratocyte and L-MSC cultures, sustained growth and serial propagation was only achieved in serum-supplemented medium or the MesenCult-XF„¥ culture system (Stem Cell Technologies). Cultures established in MesenCult-XF„¥ grew faster than those grown in serum-supplemented medium and retained a more optimal MSC phenotype. L-MSC cultivated in MesenCult-XFR were also positive for CD141, rarely expressed £\-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of L-MSC established in MesenCult-XF„¥ medium. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker £GNp63, along with the corneal differentiation marker CK3/12. Our findings conclude that MesenCult-XFR is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells. Following on from the findings of the previous two parts, silk fibroin was tested as a novel dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. In this section, the growth and phenotype of HLE cells on non-porous versus porous fibroin membranes was compared. Furthermore, the growth of L-MSC in either serum-supplemented medium or the MesenCult-XFR culture system within fibroin fibrous mats was investigated. Lastly, the co-culture of HLE and L-MSC in serum-supplemented medium on and within fibroin dual-layer constructs was also examined. HLE on porous membranes displayed a flattened and squamous monolayer; in contrast, HLE on non-porous fibroin appeared cuboidal and stratified closer in appearance to a normal corneal epithelium. Both constructs maintained CK3/12 expression and distribution of £GNp63+ progenitor cells. Dual-layer fibroin scaffolds consisting of HLE cells and L-MSC maintained a similar phenotype as on the single layers alone. Overall, the present study proposed to create a three dimensional limbal tissue substitute of HLE cells and L-MSC together, ultimately for safe and beneficial transplantation back into the human eye. The results show that HLE and L-MSC can be cultivated separately and together whilst maintaining a clinically feasible phenotype containing a majority of progenitor cells. In addition, L-MSC were able to be cultivated routinely in the MesenCult-XF® culture system while maintaining a high purity for the MSC characteristic phenotype. However, as a serum-free culture medium was not found to sustain growth of both HLE and L-MSC, the combination scaffold was created in serum-supplemented medium, indicating that further refinement of this cultured limbal scaffold is required. This thesis has also demonstrated a potential novel marker for L-MSC, and has generated knowledge which may impact on the understanding of stromal-epithelial interactions. These results support the feasibility of a dual-layer tissue engineered corneolimbus constructed from silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration. Further refinement of this technology should explore the potential benefits of using epithelial-stromal co-cultures with MesenCult-XF® derived L-MSC. Subsequent investigations into the effects of long-term culture on the phenotype and behaviour of the cells in the dual-layer scaffolds are also required. While this project demonstrated the feasibility in vitro for the production of a dual-layer tissue engineered corneolimbus, further studies are required to test the efficacy of the limbal scaffold in vivo. Future in vivo studies are essential to fully understand the integration and degradation of silk fibroin biomaterials in the cornea over time. Subsequent experiments should also investigate the use of both AM and silk fibroin with epithelial and stromal cell co-cultures in an animal model of LSCD. The outcomes of this project have provided a foundation for research into corneolimbal reconstruction using biomaterials and offer a stepping stone for future studies into corneolimbal tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem/stromal cells (MSC) are rapidly becoming a leading candidate for use in tissue regeneration, with first generation of therapies being approved for use in orthopaedic repair applications. Capturing the full potential of MSC will likely require the development of novel in vitro culture techniques and devices. Herein we describe the development of a straightforward surface modification of an existing commercial product to enable the efficient study of three dimensional (3D) human bone marrow-derived MSC osteogenic differentiation. Hundreds of 3D microaggregates, of either 42 or 168 cells each, were cultured in osteogenic induction medium and their differentiation was compared with that occurring in traditional two dimensional (2D) monolayer cultures. Osteogenic gene expression and matrix composition was significantly enhanced in the 3D microaggregate cultures. Additionally, BMP-2 gene expression was significantly up-regulated in 3D cultures at day 3 and 7 by approximately 25- and 30-fold, respectively. The difference in BMP-2 gene expression between 2D and 3D cultures was negligible in the more mature day 14 osteogenic cultures. These data support the notion that BMP-2 autocrine signalling is up-regulated in 3D MSC cultures, enhancing osteogenic differentiation. This study provides both mechanistic insight into MSC differentiation, as well as a platform for the efficient generation of microtissue units for further investigation or use in tissue engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mesenchymal stromal cells (MSC) with similar properties to bone marrow derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We presently contribute to this novel area of research by evaluating methods for culturing human limbal MSC (L-MSC). Methods: Four basic strategies are compared: serum-supplemented medium (10% foetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor, and fibroblast growth factor 2, or one of two commercial serum-free media including Defined Keratinocyte Serum Free Medium (Invitrogen), and MesenCult-XF (Stem Cell Technologies). The phenotype of resulting cultures was examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141, CD271), immunocytochemistry (α-sma), differentiation assays (osteogenesis, adipogenesis, chrondrogenesis), and co-culture experiments with human limbal epithelial (HLE) cells. Results: While all techniques supported to varying degrees establishment of cultures, sustained growth and serial propagation was only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70-80% CD34-/CD45-/CD90+/CD73+/CD105+, approximately 25% α-sma+, and displayed multi-potency. Cultures established in MesenCult-XF were >95% CD34-/CD45-/CD90+/CD73+/CD105+, 40% CD141+, rarely expressed α-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ∆Np63, along with the corneal differentiation marker cytokeratin 3. Conclusions: We conclude that MesenCult-XF® is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas are one of the world�fs most important crops, serving as a staple food and an important source of income for millions of people in the subtropics. Pests and diseases are a major constraint to banana production. To prevent the spread of pests and disease, farmers are encouraged to use disease�] and insect�]free planting material obtained by micropropagation. This option, however, does not always exclude viruses and concern remains on the quality of planting material. Therefore, there is a demand for effective and reliable virus indexing procedures for tissue culture (TC) material. Reliable diagnostic tests are currently available for all of the economically important viruses of bananas with the exception of Banana streak viruses (BSV, Caulimoviridae, Badnavirus). Development of a reliable diagnostic test for BSV is complicated by the significant serological and genetic variation reported for BSV isolates, and the presence of endogenous BSV (eBSV). Current PCR�] and serological�]based diagnostic methods for BSV may not detect all species of BSV, and PCR�]based methods may give false positives because of the presence of eBSV. Rolling circle amplification (RCA) has been reported as a technique to detect BSV which can also discriminate between episomal and endogenous BSV sequences. However, the method is too expensive for large scale screening of samples in developing countries, and little information is available regarding its sensitivity. Therefore the development of reliable PCR�]based assays is still considered the most appropriate option for large scale screening of banana plants for BSV. This MSc project aimed to refine and optimise the protocols for BSV detection, with a particular focus on developing reliable PCR�]based diagnostics Initially, the appropriateness and reliability of PCR and RCA as diagnostic tests for BSV detection were assessed by testing 45 field samples of banana collected from nine districts in the Eastern region of Uganda in February 2010. This research was also aimed at investigating the diversity of BSV in eastern Uganda, identifying the BSV species present and characterising any new BSV species. Out of the 45 samples tested, 38 and 40 samples were considered positive by PCR and RCA, respectively. Six different species of BSV, namely Banana streak IM virus (BSIMV), Banana streak MY virus (BSMYV), Banana streak OL virus (BSOLV), Banana streak UA virus (BSUAV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), were detected by PCR and confirmed by RCA and sequencing. No new species were detected, but this was the first report of BSMYV in Uganda. Although RCA was demonstrated to be suitable for broad�]range detection of BSV, it proved time�]consuming and laborious for identification in field samples. Due to the disadvantages associated with RCA, attempts were made to develop a reliable PCR�]based assay for the specific detection of episomal BSOLV, Banana streak GF virus (BSGFV), BSMYV and BSIMV. For BSOLV and BSGFV, the integrated sequences exist in rearranged, repeated and partially inverted portions at their site of integration. Therefore, for these two viruses, primers sets were designed by mapping previously published sequences of their endogenous counterparts onto published sequences of the episomal genomes. For BSOLV, two primer sets were designed while, for BSGFV, a single primer set was designed. The episomalspecificity of these primer sets was assessed by testing 106 plant samples collected during surveys in Kenya and Uganda, and 33 leaf samples from a wide range of banana cultivars maintained in TC at the Maroochy Research Station of the Department of Employment, Economic Development and Innovation (DEEDI), Queensland. All of these samples had previously been tested for episomal BSV by RCA and for both BSOLV and BSGFV by PCR using published primer sets. The outcome from these analyses was that the newly designed primer sets for BSOLV and BSGFV were able to distinguish between episomal BSV and eBSV in most cultivars with some B�]genome component. In some samples, however, amplification was observed using the putative episomal�]specific primer sets where episomal BSV was not identified using RCA. This may reflect a difference in the sensitivity of PCR compared to RCA, or possibly the presence of an eBSV sequence of different conformation. Since the sequences of the respective eBSV for BSMYV and BSIMV in the M. balbisiana genome are not available, a series of random primer combinations were tested in an attempt to find potential episomal�]specific primer sets for BSMYV and BSIMV. Of an initial 20 primer combinations screened for BSMYV detection on a small number of control samples, 11 primers sets appeared to be episomal�]specific. However, subsequent testing of two of these primer combinations on a larger number of control samples resulted in some inconsistent results which will require further investigation. Testing of the 25 primer combinations for episomal�]specific detection of BSIMV on a number of control samples showed that none were able to discriminate between episomal and endogenous BSIMV. The final component of this research project was the development of an infectious clone of a BSV endemic in Australia, namely BSMYV. This was considered important to enable the generation of large amounts of diseased plant material needed for further research. A terminally redundant fragment (.1.3 �~ BSMYV genome) was cloned and transformed into Agrobacterium tumefaciens strain AGL1, and used to inoculate 12 healthy banana plants of the cultivars Cavendish (Williams) by three different methods. At 12 weeks post�]inoculation, (i) four of the five banana plants inoculated by corm injection showed characteristic BSV symptoms while the remaining plant was wilting/dying, (ii) three of the five banana plants inoculated by needle�]pricking of the stem showed BSV symptoms, one plant was symptomless while the remaining had died and (iii) both banana plants inoculated by leaf infiltration were symptomless. When banana leaf samples were tested for BSMYV by PCR and RCA, BSMYV was confirmed in all banana plants showing symptoms including those were wilting and/or dying. The results from this research have provided several avenues for further research. By completely sequencing all variants of eBSOLV and eBSGFV and fully sequencing the eBSIMV and eBSMYV regions, episomal BSV�]specific primer sets for all eBSVs could potentially be designed that could avoid all integrants of that particular BSV species. Furthermore, the development of an infectious BSV clone will enable large numbers of BSVinfected plants to be generated for the further testing of the sensitivity of RCA compared to other more established assays such as PCR. The development of infectious clones also opens the possibility for virus induced gene silencing studies in banana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates—which we term “micromarrows.” Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper contextualises the Teaching Teachers of the Future (TTF) Project and acts as a preamble for the TTF stream of papers at ACEC2012. It discusses the aims and objectives of the project, its genesis in a changing educational and political landscape, the use of TPACK as a theoretical scaffold, and briefly report on the operations of the various components and partners. Further, it will discuss the research opportunities afforded by the project including a national survey of all pre-service teachers in Australia gauging their TPACK confidence and the use of the Most Significant Change (MSC) methodology. Finally the paper will discuss the outcomes of the project and its future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyvinylpyrrolidone–iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP–I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP–I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP–I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP–I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP–I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP–I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP–I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP–I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80 ± 1.64 vs. 3.8 ± 2.19, p < 0.05). The biocompatibility and pro-osteogenic activity of PVP–I on the cells from joint tissue and the enhanced subchondral bone formation in PVP–I treated scaffolds would thus indicate the potential of PVP–I for osteochondral defect repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.