611 resultados para MPEG


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Podcast involving audio responses from three universities discussing the assessment and feedback lifecycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Podcast from interviews with universities discussing the benefits of electronic management of assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A podcast including interviews from diffferent universities on how they've used Jisc EMA resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An audio podcast involving interviews from universities talking about electronic management of assessment business processes and systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Claire spoke to Janette Hillicks about the University of Bradford's implementation of XCRI-CAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing—which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them—including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these terraces from terraces formed by externally forced pulses of vertical incision. In a separate study, Chapter 5 utilizes image and topographic data from the Mars Reconnaissance Orbiter to quantitatively identify spatial structures in the polar layered deposits of Mars, and identifies sequences of beds, consistently 1-2 meters thick, that have accumulated hundreds of kilometers apart in the north polar layered deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erosion is concentrated in steep landscapes such that, despite accounting for only a small fraction of Earth’s total surface area, these areas regulate the flux of sediment to downstream basins, and their rugged morphology records transient changes (or lack thereof) in geologic and climatic forcing. Steep landscapes are geomorphically active; large sediment fluxes and rapid landscape evolution rates can create or destroy habitat for humans and wildlife alike, and landslides, debris flows, and floods common in mountainous areas represent a persistent natural and structural hazard. Despite the central role that steep landscapes play in the geosciences and in landscape management, the processes controlling their evolution have been poorly studied compared to lower-gradient areas. This thesis focuses on the basic mechanics of sediment transport and bedrock incision in steep landscapes, as these are the fundamental processes which set the pace and style of landscape evolution. Chapter 1 examines the spatial distribution of slow-moving landslides; these landslides can dominate sediment fluxes to river networks, but the controls on their occurrence are poorly understood. Using a case-study along the San Andreas Fault, California, I show that slow-moving landslides preferentially occur near the fault, suggesting a rock-strength control on landslide distribution. Chapter 2 provides the first field-measurements of incipient sediment motion in streams steeper than 14% and shows a large influence of slope-dependent flow hydraulics and grain-scale roughness on particle motion. Chapter 3 presents experimental evidence for bedrock erosion by suspended sediment, suggesting that, in contrast to prevailing theoretical predictions, suspension-regime transport in steep streams can be the dominant erosion agent. Steep streams are often characterized by the presence of waterfalls and bedrock steps which can have locally high rates of erosion; Chapters 4 and 5 present newly developed, experimentally validated theory on sediment transport through and bedrock erosion in waterfall plunge pools. Finally, Chapter 6 explores the formation of a bedrock slot canyon where interactions between sediment transport and bedrock incision lead to the formation of upstream-propagating bedrock step-pools and waterfalls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.

Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.

Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.

Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.

In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.

Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PET/SiO2 layers were chemically modified to maintain immobilization of functional single molecules. GFP molecules provide an ideal system due to their stability and intrinsic fluorescence. GFP in vivo biotinylated within its NH2-terminal region and attached on the substrate via the biotinstreptavidin bond was further investigated with confocal microscopy, atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). AFM revealed monolayered donut-like structures representing assemblies of biotinstreptavidinbiotinGFP immobilized onto PET/SiO2 surfaces via mPEG. In particular, regions with an approximate height of 12 nm, which approaches the molecular dimensions of the above complex given by molecular modeling, could be detected. The dimensions of the donut-like structures suggest a close-to-each-other positioning of the GFP molecules - which, however, retain their functionality, as evidenced by confocal microscopy. © 2011 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

聚乙二醇-聚ε-己内酯两嵌段共聚物(PEG-PCL)由于其在生物医用材料中的潜在应用而受到广泛的关注。然而,研究表明这类嵌段共聚物的许多性质,如药物渗透性,降解性能和机械性质等,都要受到它们的结晶行为与聚集态结构的显著影响。而在本课题开始之前,还没有关于PEG-PCL的结晶行为与形态的系统研究报道。因此,本文希望通过对PEG-PCL两嵌段共聚物结晶行为与形态的研究,能为这类生物降解高分子材料的工业应用提供一定的科学依据。本文使用辛酸亚锡为催化剂,甲氧基聚乙二醇(mPEG)为大分子引发剂,合成了一系列分子量分布比较窄,PCL质量百分含量为0.16-0.93的PEG-PCL两嵌段共聚物。两嵌段共聚物中的PEG段分子量固定为5000,共聚物的组成通过改变PCL链段的长度来调节。本文使用DSC,WAXD,常温或变温FTIR详细研究了PEG-PCL的结晶和熔融行为,使用偏光显微镜(POM)观察了PEG-PCL的结晶形态及结晶生长行为,利用SAXS研究了PEG-PCL的微观形态,得出了如下结果:(1)WAXD与FTIR的结果表明,两嵌段共聚物中的PEG与PCL形成微相分离的结晶微区,不存在两者的共晶或混晶。PCL含量为0.23-0.87的两嵌段共聚物中都能观察到的PEG与PCL的结晶。变温FTIR结果显示,当PCL含量低于或等于0.36,两嵌段共聚物中的PEG先从熔体中结晶;反之,当PCL含量等于或大于0.43,则熔体中PCL结晶先出现。(2)DSC结果表明,随着PEG-PCL中PCL段长度的增加,PCL段的结晶和熔融温度显著增加;相反,PEG段的结晶和熔融温度则显著降低。当PCL的质量分数由0增加至0.93,PEG的结晶度从79%降低至0,然而PCL的结晶度却不是单调变化,而是出现一个最大值。(3)在POM下观察PEG-PCL的36 oC等温熔体结晶过程,当PCL质量分数不超过0.36时,在偏光显微镜下只能观察到PEG球晶;而当PCL质量分数大于或等于0.56时,只能观察到PCL球晶;PCL含量为0.43和0.50的两种两嵌段共聚物中观察到了一种独特的同心球晶,同心球晶的中心部分形态类似于PCL球晶,而外部则类似于PEG球晶。PEG球晶与PCL球晶生长速率受PCL含量的影响显著:当PCL质量分数从0增加至0.50,PEG球晶的生长速率大大降低;然而,PCL球晶的生长速率却不是单调变化,而是在PCL质量分数为0.62时达到最大值。(4)SAXS结果表明,结晶后的PEG-PCL的微区结构是由交替的PEG与PCL的层状微区组成。共聚物的长周期在PCL质量分数为0.50时达到最大值。当PCL质量分数由0增加至0.50时,由于PCL层厚度的显著增加,共聚物的长周期显著增加;而当PCL含量由0.50继续增加至0.87,由于PEG层厚度的急剧降低,又使得共聚物的长周期迅速降低。(5)首次利用POM和微区红外光谱详细研究了PEG-PCL50/50(w/w)同心球晶的形成过程,发现同心球晶的形成是由于一种独特的结晶动力学造成的。另外,即使同心球晶的中心和外部的形态差别巨大,但是红外显微镜结果显示,两部分的组成却是相同的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用MALDI-TOF质谱研究了非极性高聚物PS,通过此研究获得了PS的分子量、分子量分布和重复单元等信息。同时利用同位素分析和PSD-MALDI-TOF质谱证明了[M+Ag3]+的存在。并在此基础上,推断出了PS的端基结构信息,这在大分子高聚物端基分析方面尚属首次。 利用MALDI-TOF质谱研究了MALDI条件下四种黄酮类化合物在银簇合离子形成过程中的作用以及影响。结果表明,有机物中对紫外区激光有较强吸收的不饱和结构、影响有机物离子化的基团以及影响π-d共轭的空间位阻效应的基团都是影响银簇合离子形成的重要因素。 利用MALDI-TOF质谱结合PSD-MALDI-TOF碎片信息对两嵌段共聚物MPEG-PCL进行了研究。准确地分析了嵌段共聚物的嵌段长度和嵌段分布情况,为更好地认识和应用这类嵌段共聚物提供了重要的依据,同时也建立了分析这类嵌段共聚物的方法。 利用MALDI-TOF 质谱对具有特异物化性能的共聚物—超支化聚酯酰胺进行了研究。通过对质谱结果的分析,揭示了聚合过程中出现的多种现象及产生这些现象的原因,这对优化此类超支化聚酯酰胺的反应条件有着非常重要的意义。 结合基质的应用现状和作为基质应具备的条件,对六种含有酚羟基的弱酸性黄酮类化合物进行了筛选研究。讨论了它们成为基质的可能性以及它们在MALDI-TOF质谱实验中的应用表现,确定了其中四种黄酮类化合物可以作为有效的基质。 总结了MALDI-TOF质谱分析特殊样品的思路与经验,有些种类的样品是首次得到成功地分析。这对从事MALDI-TOF质谱分析的工作者有一定的参考价值,同时也对开拓MALDI-TOF质谱分析的应用范围有着极其重要的意义。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物降解高分子在环境保护以及组织工程、药物控制释放、骨固定等医药领域有着广泛的应用。特别是以聚丙交酷(PLA)、聚乙交酯(PGA)、聚。一己内酯(PCL)以及它们的共聚物为代表的化学合成生物降解高分子材料,由于具有优异的性能、可以大规模生产、成本较低等优点,得到了人们广泛的关注。作为生物医用材料,对无毒性的要求很严。而现在所用的脂肪族聚酯大都是用金属盐、金属有机化合物等作为催化剂合成出来的,不可避免残留一些催化剂所用的金属元素。研究表明,即使是已经获得美国FDA批准的,现在用得最普遍的辛酸亚锡所残留的锡也可能引起一些细胞毒性。因此对毒性小且活性高的催化剂的研究是非常有意义。钙离子对人体是没有毒性的,因而这几年已引起了人们的兴趣,但文献中报道的钙催化剂,如CaHZ等,催化活性尚不够让人满意。本文对高效的钙催化剂在生物降解脂肪族聚酯中的应用进行详细的研究,得到了一些有意义的结论:1、用EO和PO处理的有机氨钙催化剂(Ca/EO和Ca/PO)聚合了CL和LLA。发现CL聚合速度很快,M/I=650时70℃反应3h后收率已达到90%以上,LLA的聚合速度比CL要慢,M/I=650、70℃反应10h后收率才达到90%以上。以上聚合反应有明显的活性聚合的特点:反应初期Mv和收率和聚合时间呈线性关系;Mv在一定范围内和M/I成线性关系。2、用红外、原子吸收和核磁共振等分析手段阐明了有机氨钙催化剂的结构:结构,而且这两个催化剂的活性中心分别是均是Ca-O键。CL和LLA的开环聚合可能是以配位一插入的机理进行的。3、用C。/PO催化剂聚合LLA时有一定程度的消旋化反应发生,曳NMR研究表明相当于88%的LLA和12%外消旋以共聚。提高反应温度到110℃时比旋光度只有-125℃说明消旋化反应比较严重。4、用C。/PO催化剂先聚合CL再聚合LLA的方法合成了PCL-PLA两嵌段共聚物,并用泊NMR,13C NMR,GPC,DSC,WAXD进行了表征。其绝对和相对分子量可以通过M/I和投料比进行控制。定量碳谱图表明有较严重的消旋化反应发生,相当于84%的LLA和16%外消旋LA共聚。DSC和似XD分析表明,PLA段的分子量小时PLA段不结晶,当PLA段的分子量达到一定程度(3000以上)后PCL一PLA嵌段共聚物有相分离现象发生。5、以各种分子量的PEG为引发剂用氨钙催化剂和开环聚合CL,合成了一系列PCL-PEG-PCL三嵌段共聚物,并用妞NMR,laCNMR,GPC,DSC,做XD进行了表征。聚合物的结构可以通过改变PEG的分子量和CL/PEG投料比来调整。从DSC和wAXD分析可以得出以下几个结论:PCL-PEG-PCL嵌段共聚物有相分离现象发生,形成PCL和PEG微相区域;PEG段的结晶行为受先结晶的PCL段的影响;PCL段的分子量越大PEG段的Tc和Tm越低,其结晶度越低。6、以各种分子量的PEG为引发剂用氨钙催化剂80℃下开环聚合LLA24小时,合成了一系列PLA-PEG-PLA三嵌段共聚物,和别的催化剂比起来温度低得多,反应时间也短得多。可以通过改变PEG的分子量和CL/PEG投料比来调整聚合物的结构。DSC和WAXD分析表明,PLA-PEG-PLA三嵌段共聚物中PEG段的结晶能力受PLA段的影响非常大:当PEG段的分子量很小时(如1000)很难结晶;即使当PEG段的分子量较大时如果PLA段的分子量达到一定程度时PEG段同样也不结晶;而且PLA段的结晶行为受本身分子量的影响比较大,其Tc和伽随着分子量增加有较大的提高。7、合成了MPEG-PLA两嵌段共聚物,发现合成PLA段的分子量大的聚合物比较困难,MPEG-PCL两嵌段共聚物很难合成。DsC和WAXD分析表明,PLA段对MPEG段结晶有一定程度的影响,但是比三嵌段共聚物的影响要小得多。8、用荧光光谱和IHNMR研究了上面合成出的几个样品的胶束行为。发现cmc由大到小的顺序为MPEG(5000)-PLA(5100),PLA(3050)-PEG(4600)-PLA(3050),PCL(2270)-PEG(5000)-PCL(2270),PCL(4600)-PEG(4600)-PCL(4600)。PCL-PEG-PCL三嵌段共聚物在水中形成了具有核一壳结构的胶束。9、以苯甲醇处理的有机氨钙催化剂开环聚合了CL。泊NMR谱图表明得到的聚合物具有苯端基。这一结果为用硝苯基乙醇代替苯甲醇制备催化剂,然后开环聚合CL或LA得到硝基苯端基的脂肪族聚酯打下了实验基础。