166 resultados para MOSSBAUER
Resumo:
The structure and magnetoresistance properties in sintered samples of La-2/3 Ca-1/3 Mn1-x FexO3 (0 less than or equal to x less than or equal to 0.84) are studied by using Mossbauer spectroscopy, XRD and magnetic measurement. There are antiferromagnetic interactions between Fe and its nearest neighbors (Fe, Mn) when 0 less than or equal to x less than or equal to 0.67, which are important factors influencing the double-exchange between Mn3+ and Mn4+, Curie temperature, magnetic moment and GMR. It is suggested that the Mn3+(Fe3+)/Mn4+ system also consists of magnetic clusters with different sizes.
Resumo:
为了深入研究丙烯选择氧化和氨氧化剂的作用机理。探索不同金属离子的催化作用,催化剂的结构、性质与活性的关系。我们应用共沉淀方法制备了α-钼酸铋,γ-钼酸铋,Bi_3(FeO_4)(MoD_4)_2土业催化剂Mo_(12)BiFe_3Ni_(2.5)Co_(4.5)Pa_5K_(0.107)O_(55)+50%SiO_2,Bi_3FexM_(0.3-x)O_n催化剂体系,浸Bi钼酸铁体系,M_7~(24)Fe_3BiMo_(12)O_(96)(M~(2+) = Mg, Ni, Co, Cu, Pb, Sr)体系的催化剂。测定了这些催化剂的X射线衍射数据、IR,Raman,ESCA,Mossbauer等,研究了这些催化剂的结构、组成、物理化学性质。同时考察了这些催化剂对丙烯氨氧化的催化作用,并试图把催化剂的性质与催化作用关联起来。同时,为了进一步研究催化剂的表面活性相、活性中心的性质,丙烯氧化和氨氧化中的表面中间体的形式和键合情况。我们使用了丙烯、丙烯醇、氨、丙烯胺作为分子探针,研究了这些分子的程序升温脱附情况,以便了解钼铋催化剂的催化作用。浸Bi钼酸铁研究说明,Bi可能是丙烯α氢脱除的活性中心。Mo-O多面体起丙烯吸附、氧或氮插入活性中心的作用。由于钼酸铁晶格的敞开性和弹性。Bi进入了钼酸铁晶格,形成了Bi嵌钼酸铁的表层结构。成为对丙烯选择氧化的催化剂。钼酸铁由于Fe~(3+)的部分填充d电子结构,是一种使双键断裂,进行深度氧化的催化剂。Bi进入Fe_2(MoO_4)_3表层的缺陷,形成Bi = o-O-Mo = o对,使深度氧化中心变成选择氧化中心。Bi_3Fe_xMo_(3-x)O_n体系中,随着Fe的加入,形成了Mo-Bi-Fe三元化合物。该化合物比Bi_2Mo_2O_9具有更高的活性和选择性。晶格中Fe~(3+)的存在,将促进P型电导,这时Fe~(3+)相当于受主杂质杂质,降低了费米能级。而丙烯的吸附活化形成烯丙基是一给电子过程。因此,Fe~(3+)的存在将加快丙烯活化吸附的速度,也就加速了反应。并且,Fe~(3+)/Fe~(2+)的氧化还原对存在,能快速接受Mo或Bi上的电子,保持Mo和Bi的氧化态,有利于反应的进行。同时,Fe~(2+)具有较低的电负性,能起到提供氧吸附、进行再氧化的中心的作用。把催化剂的电子提供给氧,同时把晶格氧输送到还原位上。这种多功能作用的协合,可能是Mo-Bi-Fe体系高活性和高选择性的原因。丙烯吸附中,所有催化剂都存在可连吸附中心和不可逆吸附中心。丙烯的吸附是活化解离吸附。不同催化剂的丙烯和丙烯醛的脱附情况相似。说明不同催化剂的丙烯吸附中心,丙烯醛或(丙烯腈)生成中心可能是相同的。丙烯醛脱附峰的存在,说明催化剂的晶格氧离子确能与丙烯作用生成丙烯醛。丙烯醇和丙烯胺的脱附说明,都存在可逆吸附和不可逆吸附两种类型。它们在催化剂表面的吸附是活化解离化学吸附,其吸附中心可能与丙烯选择氧化和氨氧化中的丙烯醛(或丙烯腈)生成中心相同。丙烯氧化反应中,烯丙基氧插入形成的Q-O键合物中间体,与丙烯醇解离吸附形成的表面吸附物种(Mo-O-CH_2-CH = CH_2)相同。同样,丙烯胺解离吸附形成的表面物种(Mo-NH-CH_2-CH = CH_2),可能与丙烯氨氧化中烯丙基Q-NH键合而成的中间体相同。这两种中间体,对选择性生成丙烯醛和丙烯腈起决定作用。NH_3的吸附存在两种可逆吸附类型。而不可逆吸附在高温区以N_2和H_2O脱附出来。NH_3在催化剂的解离吸附形成NH_2基。温度升高继续脱氢形成NH基。该NH基会插入烯丙基,形成(Mo-NH-CH_2-CH = CH_2)中间体,其继续反应形成丙烯腈。
Resumo:
The electronic and magnetic structures of Nd2Fe17 and Nd2Fe17N3 have been calculated using the first-principle, spin-polarized orthogonalized linear combination of atomic orbitals method. Comparative studies of the two materials reveal important effects of the nitrogen atoms (at 9e site) on the electronic and magnetic structures. Results are presented for the total density of states, site-projected partial density of states and the spin magnetic moments on four nonequivalent Fe sites. The highest magnetic moments are found to be located on the 6c site for Nd2Fe17 and on the 9d site for Nd2Fe17N3, in agreement with the neutron and Mossbauer experiments. The variation trends of the magnetic moments on different Fe sites are discussed in terms of the separation between Fe and N atoms. Compared with Nd2Fe17, an increase in the exchange splitting of the Fe d band is found in Nd2Fe17N3, which accounts for its higher Curie temperature as observed in experiments. The calculated results show that the nitrogen atoms are charge acceptors in these compounds.
Resumo:
The magnetic properties of the Nd2Fe17-xSix intermetallic compounds are studied by means of spin-polarized supercell calculations in which the selected sites of substitution are close to the situations in real samples. It is shown that the average Fe moment increases with x and saturates near x = 3. This correlates quite well with the experimental dependence of Te on x. The difference between supercell and unit cell calculations are pointed out and the influence of Si atoms on the density of states of the nearby Fe atoms is emphasized. (C) 1997 American Institute of Physics.
Resumo:
主要采用了X射线衍射、Mossbauer谱、磁测量等方法系统研究了块体巨磁电阻材料La_(2/3)Ca_(1/3)Mn_(1-x)Fe_xO_3在不同铁含量(0≤x≤0.84)时结构、性能、磁性的变化,并给予合理的解释。在0
Resumo:
A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.
Resumo:
The crystal structure and magnetic properties of Sn1-xFexO2 nanograins synthesized by simple hydrothermal method using SnCl4 center dot 5H(2)O and FeCl3 center dot 6H(2)O as raw materials are studied. No secondary phase was found in the XRD spectrum. The linear change of lattice volume for different Fe content strongly supports that the Fe3+ substitutes Sn4+ in SnO2 lattice. A Raman and IR spectra study indicated that the Fe incorporates into the SnO2 lattice. Both ferromagnetic and paramagnetic signals are detected in the Mossbauer spectra. The Sn1-xFexO2 (x <= 0.10) samples show room-temperature ferromagnetism (RTFM) and the saturation magnetization increased with increasing Fe percent. Fe ions present three kinds of magnetic behaviors including paramagnetic, ferromagnetic, and antiferromagnetic in the samples observed by investigation of the M-H and M-T curves. The weak RTFM was due to only a fraction of Fe ions contributing to magnetic-order coupling mediated by oxygen vacancy.
Resumo:
(Ni0.65Zn035Cu0.1Fe1.904)-Cu-./SiO2 natiocomposites were fabricated by the sol-gel method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. With infrared spectra, X-ray diffraction, transmission electron microscope, Raman spectra, Mossbauer spectroscopy and vibrating sample magnetometer measurements, the formation of single phase nanocrystalline NiZnCu ferrites dispersed in silica matrix is confirmed when the sample is annealed at 550degreesC. The transition from the paramagnetic to the ferromagnetic state is observed as the annealing temperature increases from 750degreesC to 1150degreesC. The magnetic properties of these nanocomposites are clearly size dependent. The saturation magnetization increases with the annealing temperature.
Resumo:
Polyvinyl alcohol (PVA) was first used as chelating agent and metal nitrates as precursor of ferrite in the fabrication of nanocrystalline Ni0.65Zn0.35Cu0.1Fe1.9O4 particles by the sol-gel method. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Mossbauer spectroscopy. The dependence of the decomposition of dried gel, the formation of spinel structured NiZnCu ferrite, the sizes of annealed particles, the saturation magnetization and coercivity of annealed particles on annealing temperature is presented.
Resumo:
MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.
Resumo:
Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of alpha-Fe2O3. The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%.
Resumo:
Sr2Fe1-xZnxNbO6-x/2 (0 <= x <= 0.5) and Sr2Fe1-xCuxNbO6-x/2 (0.01 <= x <= 0.05) with the double perovskite structure have been synthesized. The crystal structures at room temperature were determined from Rietveld refinements of X-ray powder diffraction data. The plots of the imaginary parts of the impedance spectrum, Z '', and the electric modulus, M '', versus log (frequency), possess maxima for both curves separated by less than a half decade in frequency with associated capacities of 2 nF. The enhancement of the overall conductivity Of Sr2Fe1-xMxNbO6-x/2 (M = Cu and Zn) is observed, as increases from 2.48 (3) x 10(-4) S/cm for Sr2FeNbO6 to 3.82 (5) x 10(-3) S/cm for Sr2Fe0.8Zn0.2NbO5.9 at 673 K. Sr2Fe0.8Zn0.2NbO5.9 is chemically stable under the oxygen partial pressure from 1 atm to 10(-22) atm at 873 K. The p and n-type electronic conductions are dominant under oxidizing and reducing conditions, respectively, suggesting a small-polaron hopping mechanism of electronic conduction.
Resumo:
By using a correction factor of d electron effects on bond, PV theory is applied to the calculation of chemical bond;parameters of d transition-metal compounds. Racah parameters and Mossbauer isomer shifts are calculated, and the results are agreement with the experimental values.
Resumo:
In an acidic aqueous solution of acetonitrile, the catalytic activity of the catalysts consisted of Pd(OAc)(2)/hydroquinone(HQ) with iron phthalocyanine (FePc) from various sources was obviously different in the oxidation of cyclohexene to cyclohexanone, The analysis of the FePc using IR spectroscopy, Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy(SEM) and BET surface area measurement indicated that the catalytic activity of the multicomponent catalytic system composed of iron phthalocyanines depends on the amount of mu -oxo FePc, the crystallinity and the surface structure of iron phthalocyanine.
Resumo:
讨论了B位二元复合钙钛矿型复合氧化物LaMyM1'O3(M,M’=Mn,Fe,Co;y=0.0~1.0)中过渡金属离子的状态及其间的相互作用.在Mn-Co复合体系中,富锰区(y>o.5)Mn3+-O2--Mn4+的铁磁超交换作用对样品的磁性起决定作用.富钴区(y<0.5)Co2+和CoIII离子的存在及其浓度是影响磁性和电导性的主要因素.y=0.5时样品的结构决定了样品的强铁磁性质.在Fe-Mn和Fe-Co体系中Fe离子的状态的不同主要是由于Mn、Co离子在其周围的分布和氧化还原性质的不同而引起的.