991 resultados para MORPHOLOGY TRANSITION
Resumo:
Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.
Resumo:
The kinematic approach to cosmological tests provides direct evidence to the present accelerating stage of the Universe that does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q(0)+q(1)z, where q(0) and q(1) are arbitrary constants to be constrained by the union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q(0),q(1))=(-0.73,1.5) whereas the transition redshift is z(t)=0.49(-0.07)(+0.14)(1 sigma) +0.54-0.12(2 sigma). This kinematic result is in agreement with some independent analyses and more easily accommodates many dynamical flat models (like Lambda CDM).
Resumo:
The radiation of angiosperms is associated with shifts among pollination modes that are thought to have driven the diversification of floral forms. However, the exact sequence of evolutionary events that led to such great diversity in floral traits is unknown for most plant groups. Here, we characterize the patterns of evolution of individual floral traits and overall floral morphologies in the tribe Bignonieae (Bignoniaceae). We identified 12 discrete traits that are associated with seven floral types previously described for the group and used a penalized likelihood tree of the tribe to reconstruct the ancestral states of those traits at all nodes of the phylogeny of Bignonieae. In addition, evolutionary correlations among traits were conducted using a maximum likelihood approach to test whether the evolution of individual floral traits followed the correlated patterns of evolution expected under the ""pollination syndrome"" concept. The ancestral Bignonieae flower presented an Anemopaegma-type morphology, which was followed by several parallel shifts in floral morphologies. Those shifts occurred through intermediate stages resulting in mixed floral morphologies as well as directly from the Anemopaegma-type morphology to other floral types. Positive and negative evolutionary correlations among traits fit patterns expected under the pollination syndrome perspective, suggesting that interactions between Bignonieae flowers and pollinators likely played important roles in the diversification of the group as a whole.
Resumo:
During the early Holocene two main paleoamerican cultures thrived in Brazil: the Tradicao Nordeste in the semi-desertic Sertao and the Tradicao Itaparica in the high plains of the Planalto Central. Here we report on paleodietary singals of a Paleoamerican found in a third Brazilian ecological setting - a riverine shellmound, or sambaqui, located in the Atlantic forest. Most sambaquis are found along the coast. The peoples associated with them subsisted on marine resources. We are reporting a different situation from the oldest recorded riverine sambaqui, called Capelinha. Capelinha is a relatively small sambaqui established along a river 60 km from the Atlantic Ocean coast. It contained the well-preserved remains of a Paleoamerican known as Luzio dated to 9,945 +/- 235 years ago; the oldest sambaqui dweller so far. Luzio's bones were remarkably well preserved and allowed for stable isotopic analysis of diet. Although artifacts found at this riverine site show connections with the Atlantic coast, we show that he represents a population that was dependent on inland resources as opposed to marine coastal resources. After comparing Luzio's paleodietary data with that of other extant and prehistoric groups, we discuss where his group could have come from, if terrestrial diet persisted in riverine sambaquis and how Luzio fits within the discussion of the replacement of paleamerican by amerindian morphology. This study adds to the evidence that shows a greater complexity in the prehistory of the colonization of and the adaptations to the New World.
Resumo:
The stingless bees are among the most abundant and ecologically important social invertebrates in tropical communities. The Neotropical stingless bee Melipona quadrifasciata has two subspecies: M. quadrifasciata quadrifasciata and M. quadrifasciata anthidioides. The main difference between subspecies are the yellow metassomal stripes, which are continuous in M. q. quadrifasciata and discontinuous in M. q. anthidioides. Recently, two populations were described with continuous stripes and inhabiting clearly disjunct areas in relation to M. q. quadrifasciata. We sequenced 852 bp of the mtDNA COI gene from 145 colonies from 56 localities, and for the first time performed a detailed phylogeographic study of a neotropical stingless bee. Phylogenetic analyses revealed the existence of two clades exhibiting a south to north distribution: southern populations comprise the subspecies M. q. quadrifasciata, and northern populations are composed of M. q. anthidioides and two disjunct populations with continuous stripes. The divergence time of these two phylogroups was estimated between 0.233 and 0.840 million years ago in the Pleistocene, a period of climatic changes and geomorphological alterations in the Neotropical region. No evidence of genetic structure in relation to the tergal stripes was found, indicating that the morphological trait regarding the pattern of stripes on tergites is not an accurate diagnostic for the subspecies of M. quadrifasciata.
Resumo:
The mandible has a mixed embryological origin, and its growth is associated with the secondary cartilage of the condyle process (CP). In this area, growth depends on an array of intrinsic and extrinsic factors that influence protein metabolism. In the present study, we used an adolescent rat model to evaluate the growth and development of the CP under conditions of pre- and postnatal protein deficiency, combined with or without the stress of severe burn injury (BI). We found that protein deficiency severely undermined the growth of the CP, by altering the thickness of its constituent layers. BI is also capable of affecting CP growth, although the effect is less severe than protein deficiency. Interestingly, the summed effect of protein deficiency and BI on the CP is less severe than protein deficiency alone. A possible explanation is that the increased carbohydrates in a hypoproteic diet stimulate the production of endogenous insulin and protein synthesis, which partially compensates for the loss of lean body mass caused by BI.
Resumo:
Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
Hard-scattered parton probes produced in collisions of large nuclei indicate large partonic energy loss, possibly with collective produced-medium response to the lost energy. We present measurements of pi(0) trigger particles at transverse momenta p(T)(t) = 4-12 GeV/c and associated charged hadrons (p(T)(a) = 0.5-7 GeV/c) vs relative azimuthal angle Delta phi in Au + Au and p + p collisions at root s(NN) = 200 GeV. The Au + Au distribution at low p(T)(a), whose shape has been interpreted as a medium effect, is modified for p(T)(t) < 7 GeV/c. At higher p(T)(t), the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p(T)(a), which quantitatively challenges some medium response models. The associated yield of hadrons opposing the trigger particle in Au + Au relative to p + p (I(AA)) is suppressed at high p(T) (I(AA) approximate to 0.35-0.5), but less than for inclusive suppression (R(AA) approximate to 0.2).
Resumo:
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.
Resumo:
We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2, R) local symmetry and an SO(D, 2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D + 2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.
Resumo:
We propose a schematic model to study the formation of excitons in bilayer electron systems. The phase transition is signalized both in the quantum and classical versions of the model. In the present contribution we show that not only the quantum ground state but also higher energy states, up to the energy of the corresponding classical separatrix orbit, ""sense"" the transition. We also show two types of one-to-one correspondences in this system: On the one hand, between the changes in the degree of entanglement for these low-lying quantum states and the changes in the density of energy levels; on the other hand, between the variation in the expected number of excitons for a given quantum state and the behavior of the corresponding classical orbit.
Resumo:
Oxides RNiO(3) (R - rare-earth, R not equal La) exhibit a metal-insulator (MI) transition at a temperature T(MI) and an antiferromagnetic (AF) transition at T(N). Specific heat (C(P)) and anelastic spectroscopy measurements were performed in samples of Nd(1-x)Eu(x)NiO(3), 0 <= x <= 0.35. For x - 0, a peak in C(P) is observed upon cooling and warming at essentially the same temperature T(MI) - T(N) similar to 195 K, although the cooling peak is much smaller. For x >= 0.25, differences between the cooling and warming curves are negligible, and two well defined peaks are clearly observed: one at lower temperatures that define T(N), and the other one at T(MI). An external magnetic field of 9 T had no significant effect on these results. The elastic compliance (s) and the reciprocal of the mechanical quality factor (Q(-1)) of NdNiO(3), measured upon warming, showed a very sharp peak at essentially the same temperature obtained from C(P), and no peak is observed upon cooling. The elastic modulus hardens below T(MI) much more sharply upon warming, while the cooling and warming curves are reproducible above T(MI). Conversely, for the sample with x - 0.35, s and Q(-1) curves are very similar upon warming and cooling. The results presented here give credence to the proposition that the MI phase transition changes from first to second order with increasing Eu doping. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549615]
Resumo:
Measurements are presented of the complex dynamic Young's modulus of NdNiO(3) and Nd(0.65)Eu(0.35)NiO(3) through the metal-insulator transition (MIT). Upon cooling, the modulus presents a narrow dip at the MIT followed by an abrupt stiffening of similar to 6%. The anomaly is reproducible between cooling and heating in Nd(0.65)Eu(0.35)NiO(3) but appears only as a slow stiffening during cooling in undoped NdNiO(3), in conformance with the fact that the MIT in RNiO(3) changes from strongly first order to second order when the mean R size is decreased. The elastic anomaly seems not to be associated with the antiferromagnetic transition, which is distinct from the MIT in Nd(0.65)Eu(0.35)NiO(3). It is concluded that the steplike stiffening is due to the disappearance or freezing of dynamic Jahn-Teller (JT) distortions through the MIT, where the JT active Ni(3+) is disproportionated into alternating Ni(3+delta) and Ni(3-delta). The fluctuating octahedral JT distortion necessary to justify the observed jump in the elastic modulus is estimated as similar to 3% but does not have a role in determining the MIT, since the otherwise-expected precursor softening is not observed.
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.