930 resultados para MISSENSE MUTATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (121V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We ascertained a Brazilian family with nine individuals affected by autosomal dominant nonsyndromic sensorineural hearing loss. The bilateral hearing loss affected mainly mid-high frequencies, was apparently stable with an early onset. Microsatellites close to the DFNA8/DFNA12 locus, which harbors the TECTA gene, showed significant multipoint lod scores (32) close to marker D11S4107. Sequencing of the exons and exon-intron boundaries of the TECTA gene in one affected subject revealed the deletion c.5383 + 5delGTGA in the 5' end of intron 16, that includes the last two bases of the donor splice site consensus sequence. This mutation segregates with deafness within the family. To date, 33 different TECTA mutations associated with autossomal dominant hearing loss have been described. Among them is the mutation reported herein, first described by Hildebrand et al. (2011) in a UK family. The audioprofiles from the UK and Brazilian families were similar. In order to investigate the transcripts produced by the mutated allele, we performed cDNA analysis of a lymphoblastoid cell line from an affected heterozygote with the c.5383 + 5delGTGA and a noncarrier from the same family. The analysis allowed us to identify an aberrant transcript with skipping of exon 16, without affecting the reading frame. One of the dominant TECTA mutations already described, a synonymous substitution in exon 16 (c.5331 G<A), was also shown to affect splicing resulting in an aberrant transcript lacking exon 16. Despite the difference in the DNA level, both the synonymous substitution in exon 16 (c.5331 G<A) and the mutation described herein affect splicing of exon 16, leading to its skipping. At the protein level they would have the same effect, an in-frame deletion of 37 amino-acids (p.S1758Y/G1759_N1795del) probably leading to an impaired function of the ZP domain. Thus, like the TECTA missense mutations associated with dominant hearing loss, the c5383 + 5delGTGA mutation does not have an inactivating effect on the protein. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate the prevalence of genetic defects in clinically suspected autoinflammatory syndromes (AIS) in a Brazilian multicenter study. The study included 102 patients with a clinical diagnosis of Cryopyrin Associated Periodic Syndromes (CAPS), TNF Receptor Associated Periodic Syndrome (TRAPS), Familial Mediterranean Fever (FMF), Mevalonate Kinase Deficiency (MKD) and Pediatric Granulomatous Arthritis (PGA). One of the five AIS-related genes (NLRP3, TNFRSF1A, MEFV, MVK and NOD2) was evaluated in each patient by direct DNA sequencing, based on the most probable clinical suspect. Clinical diagnoses of the 102 patients were: CAPS (n = 28), TRAPS (n = 31), FMF (n = 17), MKD (n = 17) and PGA (n = 9). Of them, 27/102 (26 %) had a confirmed genetic diagnosis: 6/28 (21 %) CAPS patients, 7/31 (23 %) TRAPS, 3/17 (18 %) FMF, 3/17 (18 %) MKD and 8/9 (89 %) PGA. We have found that approximately one third of the Brazilian patients with a clinical suspicion of AIS have a confirmed genetic diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD40 ligand (CD40L) deficiency or X-linked hyper-IgM syndrome (X-HIGM) is a well-described primary immunodeficiency in which Pneumocystis jiroveci pneumonia is a common clinical feature. We have identified an unusual high incidence of fungal infections and other not yet described infections in a cohort of 11 X-HIGM patients from nine unrelated Brazilian families. Among these, we describe the first case of paracoccidioidomycosis (PCM) in X-HIGM. The molecular genetic analysis of CD40L was performed by gene sequencing and evaluation of CD40L protein expression. Nine of these 11 patients (82%) had fungal infections. These included fungal species common to CD40L deficiency (P. jiroveci and Candida albicans) as well as Paracoccidioides brasiliensis. One patient presented with PCM at age 11 years and is now doing well at 18 years of age. Additionally, one patient presented with a simultaneous infection with Klebsiella and Acinetobacter, and one with condyloma caused by human papilloma virus. Molecular analysis revealed four previously described CD40L mutations, two novel missense mutations (c.433 T>G and c.476 G>C) resulting in the absence of CD40L protein expression by activated CD4(+) cells and one novel insertion (c.484_485insAA) within the TNFH domain leading to a frame shift and premature stop codon. These observations demonstrated that the susceptibility to fungal infections in X-HIGM extends beyond those typically associated with X-HIGM (P. jiroveci and C. albicans) and that these patients need to be monitored for those pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zusammenfassung:rnrnDas Ziel der Arbeit bestand darin mehr über die Funktion des T-Box Transkriptionsfaktors Omb zu erfahren. Dm omb ist der nächste Verwandte zu Hs Tbx2/3, die wegen ihrer Rolle bei verschiedenen Krebsarten für die Entwicklung neuer Therapien bedeutsam sind. rnIn drei, von Herrn Pflugfelder hergestellten, omb Allelen l(1)omb282, l(1)omb12, l(1)omb15 wurden neue Mutationen kartiert. Dabei handelt es sich um zwei missense-Mutationen und eine Stopmutation. Sie betreffen Aminosäurereste, die in allen T-Box Proteinen konserviert sind und daher vermutlich lebenswichtige Proteinabschnitte betreffen. In EMSA Versuchen konnte gezeigt werden, dass die missense-Mutationen die DNA-Bindung des Omb-T Proteins verhindern.rnFür die Suche nach Omb Zielgenen wurden Gene und phylogenetisch konservierte TBE-Genabschnitte auf ihre Regulation durch Omb getestet. Dabei wurde das Expressionsmuster von Genen mitels in situ und das Muster von enhancer getriebener β-Gal Expression histochemisch oder durch Immunfärbung von wildtypischen und l(1)omb15 Larven des dritten Stadiums verglichen. rnUpstream der mirr Transkriptionseinheit wurde ein cis-regulatorisches TBE-Fragment identifiziert, das ein Aktivitätsmuster in Flügelimaginalscheiben zeigte, welches dem von Mirr nahe kommt. Sowohl ein Omb Verlust als auch die Mutation der TBE Sequenz führten zu einer ähnlichen ektopischen Aktivierung des Fragments, was auf eine Abhängigkeit von Omb hinweist. rnIn der intronischen Sequenz von inv wurde ebenfalls ein TBE-Fragment entdeckt, das eine β-Gal-Aktivität in Flügelscheiben des späten L3 Stadiums anterior der A/P Grenze zeigte. Diese Expression könnte sich mit der späten für en/inv beschriebenen Expression (Blair, 1992) decken. Immunfärbungen bestätigten, dass der Verlust dieser Aktivität in omb0 tatsächlich durch den Verlust von Omb hervorgerufen wird und nicht durch eine Entwicklungsverzögerung der Larven verursacht wird.rnSchließlich wurde durch die Reparatur von TBX Expressionsvektoren eine Konstruktreihe (Legler, 2010) fertiggestellt, mit deren Hilfe die Auswirkungen einer Überexpression auf die Zellmotilität in Drosophila untersucht werden kann. Das soll helfen den Einfluss von TBX Proteinen auf die Invasivität von Krebszellen zu verstehen.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) separate the brain and the spinal cord from the circulating blood and are important for the maintenance of the CNS homeostasis. They build a physical barrier thereby protecting the CNS from pathogens and toxic agents, and their disruption plays a crucial role in the pathogenesis of several CNS disorders. In this thesis, the blood-CNS-barriers were studied via in vitro models in two case studies for neurodegenerative disorders, in particular Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). The first model evaluates treatment possibilities of AD using nanotechnology-based strategies. Since the toxic amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of AD, reduced generation or enhanced clearance of Aβ42 peptides are expected to modify the disease course in AD. Therefore, several Aβ42-lowering drugs like flurbiprofen had been tested in clinical trials, but most of them failed due to their low brain penetration. Here, flurbiprofen was embedded in polylactide (PLA) nanoparticles and its transport was examined in an in vitro BBB model. The embedding of flurbiprofen into the nanoparticles disguised its cytotoxic potential and enabled the administration of higher drug concentrations which resulted in a sufficient transport of the drug across an endothelial cell monolayer. These results demonstrate that non-permeable drugs can be transported efficiently via nanoparticles and that these nanotechnology-based strategies are a promising tool to generate novel therapeutic options for AD and other CNS diseases. rnThe focus of the second project was to investigate the impaired integrity of the BSCB in a mouse model for ALS. About 20% of all familial ALS cases are associated with missense mutations or small deletions in the gene that encodes Cu/Zn-superoxide dismutase 1 (SOD1). To date, the molecular mechanisms resulting in ALS are still unknown, but there is evidence that the disruption of the BSCB is one of the primary pathological events. In both familial and sporadic ALS patients, loss of endothelial integrity and endothelial cell damage was observed, and studies with SOD1 transgenic mice demonstrated that the BSCB disruption was found prior to motor neuron degeneration and neurovascular inflammation. Thus, an in vitro model for ALS endothelial cells was generated which exhibited comparable integrity characteristics and tight junction (TJ) protein expression profiles as isolated primary endothelial cells of the BSCB of SOD1 transgenic mice. In this, an alteration of the βcat/AKT/FoxO1 pathway, which regulates the expression of the TJ protein claudin-5, could be observed. These data furthermore indicate that ALS is a neurovascular disease, and understanding of the primary events in ALS pathogenesis will hopefully provide ideas for the development of new therapeutic strategies. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microsomal P450 enzymes, which metabolize drugs and catalyze steroid biosynthesis require electron donation from NADPH via P450 oxidoreductase (POR). POR knockout mice are embryonically lethal, but we found recessive human POR missense mutations causing disordered steroidogenesis and Antley-Bixler syndrome (ABS), a skeletal malformation syndrome featuring craniosynostosis. Dominant mutations in exons 8 and 10 of fibroblast growth factor receptor 2 (FGFR2) cause phenotypically related craniosynostosis syndromes and were reported in patients with ABS and normal steroidogenesis. Sequencing POR and FGFR2 exons in 32 patients with ABS and/or hormonal findings suggesting POR deficiency showed complete genetic segregation of POR and FGFR2 mutations. Fifteen patients carried POR mutations on both alleles, four carried POR mutations on 1 allele, nine carried FGFR2/3 mutations on one allele and no mutation was found in three patients. The 34 affected POR alleles included 10 with A287P, 7 with R457H, 9 other missense mutations and 7 frameshifts. These 11 missense mutations and 10 others identified by database mining were expressed in E. coli, purified to apparent homogeneity, and their catalytic capacities were measured in four assays: reduction of cytochrome c, oxidation of NADPH, and support of the 17alpha-hydroxylase and 17,20 lyase activities of human P450c17. As assessed by Vmax/Km, 17,20 lyase activity provided the best correlation with clinical findings. Modeling human POR on the X-ray crystal structure of rat POR shows that these mutant activities correlate well with their locations in the structure. POR deficiency is a new disease, distinct from the craniosynostosis syndromes caused by FGFR mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase activities was first described in 1985; however the genes for P450c17 and P450c21 in these patients lack mutations. In 1986 we postulated that this disorder might be due to mutations in P450 oxidoreductase (POR), the flavoprotein that donates electron to these and all other microsomal P450 enzymes, but this hypothesis was not tested until the POR gene sequence became available through the genome database. We found five POR missense mutations in our first four patients. In vitro assays of the activities of these mutations showed that the standard assay of POR activity, reduction of cytochrome c, correlated poorly with the patients' phenotypes, but that assays of POR-supported 17alpha-hydroxylase and 17,20 lyase activities correlated well. POR deficiency is a new disorder of adrenal and gonadal steroidogenesis that affects all microsomal cytochrome P450 enzymes, hence may have important implications for genetic differences in drug metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PAX6 is a transcription activator that regulates eye development in animals ranging from Drosophila to human. The C-terminal region of PAX6 is proline/serine/threonine-rich (PST) and functions as a potent transactivation domain when attached to a heterologous DNA-binding domain of the yeast transcription factor, GAL4. The PST region comprises 152 amino acids encoded by four exons. The transactivation function of the PST region has not been defined and characterized in detail by in vitro mutagenesis. I dissected the PST domain in two independent systems, a heterologous system using a GAL4 DNA-binding site and the native system of PAX6. In both systems, the results show consistently that all four constituent exons of the PST domain are responsible for the transactivation function. The four exon fragments act cooperatively to stimulate transcription, although none of them can function individually as an independent transactivation domain. Combinations of two or more exon fragments can reconstitute substantial transactivation activity when fused to the DNA-binding domain of GAL4, but they surprisingly do not produce much activity in the context of native PAX6 even though the mutant PAX6 proteins are stable and their DNA-binding function remains unaffected. I conclude that the PAX6 protein contains an unusually large transactivation domain that is evolutionarily conserved to a high degree, and that its full transactivation activity relies on the cooperative action of the four exon fragments.^ Most PAX6 mutations detected in patients with aniridia result in truncations of the protein. Some of the truncation mutations occur in the PST region of PAX6, resulting in mutant proteins that retain their DNA-binding ability but have no significant transactivation activity. It is not clear whether such mutants are true loss-of-function or dominant-negative mutants. I show that these mutants are dominant-negative if they are coexpressed with wild-type PAX6 in cultured cells and that the dominant-negative effects result from enhanced DNA-binding ability of these mutants due to removal of the PST domain. These mutants are able to repress the wild-type PAX6 activity not only at target genes with paired domain binding sites but also at target genes with homeodomain binding sites.^ Mutations in the human PAX6 gene produce various phenotypes, including aniridia, Peters' anomaly, autosomal dominant keratitis, and familial foveal dysplasia. The various phenotypes may arise from different mutations in the same gene. To test this theory, I performed a functional analysis of two missense mutations in the paired domain: the R26G mutation reported in a case of Peters' anomaly, and the I87R mutation identified in a patient with aniridia. While both the R26 and the I87 positions are conserved in the paired boxes of all known PAX genes, X-ray crystallography has shown that only R26 makes contact with DNA. I found that the R26G mutant failed to bind a subset of paired domain binding sites but, surprisingly, bound other sites and successfully transactivated promoters containing those sites. In contrast, the I87R mutant had lost the ability to bind DNA at all tested sites and failed to transactivate promoters. My data support the haploinsufficiency hypothesis of aniridia, and the hypothesis that R26G is a hypomorphic allele. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in 7 unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits thereby interfering with integrin maturation and/or function. Our study extends knowledge of Glanzmann thrombasthenia and the pathophysiology of an integrin. This article is protected by copyright. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used the yeast three-hybrid system in a positive selection for mutants of the human histone hairpin-binding protein (HBP) capable of interacting with non-canonical hairpins and in a negative selection for loss-of-binding mutants. Interestingly, all mutations from the positive selection are located in the N- and C-terminal regions flanking a minimal RNA-binding domain (RBD) previously defined between amino acids 126 and 198. Further, in vitro binding studies demonstrate that the RBD, which shows no obvious similarity to other RNA-binding motifs, has a relaxed sequence specificity compared to full-length HBP, allowing it to bind to mutant hairpin RNAs not normally found in histone genes. These findings indicate that the sequences flanking the RBD are important for restricting binding to the highly conserved histone hairpin structure. Among the loss-of-binding mutations, about half are nonsense mutations distributed throughout the N-terminal part and the RBD whereas the other half are missense mutations restricted to the RBD. Whereas the nonsense mutations permit a more precise definition of the C-terminal border of the RBD, the missense mutations identify critical residues for RNA binding within the RBD.