231 resultados para MICROGLIA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy.Our results associate hypoxia-driven tumor response with inflammation in glioblastoma, hence underlining the importance of tumor-host interaction involving the inflammatory compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Providing analgesia without suppressing motor or sensory function is a challenge for regional anesthesia and postoperative pain management. Resiniferatoxin (RTX), an ultrapotent agonist for transient receptor potential subtype-1 (TRPV1) can produce this selective blockade, as TRPV1 is selectively expressed on nociceptors. Futhermore, after peripheral nerve injury, spontaneous ectopic activity arises from all types of nerve fibers that can affect spinal neurons and glial cells. The goal of the present experiment is to determine whether spontaneous activity generated in C-fibers or in both A&C-fibers is required for microglia activation. Method: We applied RTX (0.01%) or bupivacaine microspheres to the sciatic nerve of rats to block the conduction of C-fibers or A&C-fibers, respectively, before spared nerve injury (SNI). Behavior was tested and all the rats were sacrificed 2 days later; immunohistochemistry was performed on their spinal cord for mitogen-activated protein kinase (MAPK) p38, bromodeoxyuridine (BrdU, marker of proliferation) and Iba1 (microglial marker). Result: At day 2 after SNI robust mechanical allodynia and p38 activation in spinal microglia were documented. There was also a substantial cell proliferation in the spinal cord, all proliferating cells (BrdU+) being microglia (Iba1+). RTX blocked heat sensitivity and produced heat hypoalgesia without affecting mechanical allodynia and motor function. Microglial proliferation and p38 activation in the spinal cord were not affected by RTX (p >0.05). In contrast, a complete sensory and motor blockade was seen with bupivacaine which also significantly inhibited p38 activation and microglial proliferation in the spinal cord (p <0.05). Conclusion: We conclude that (1) RTX can provide a selective nociceptive blockade but that (2) blocking only nociceptive fibers does not impair the development of mechanical allodynia and microglia activation. Therefore (3) if microglia activation is important for chronic pain development then specific nociceptive blockade won't be sufficient to prevent it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Adelta-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. RESULTS: SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. CONCLUSION: (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNy)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-¿) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6mg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of astrocytes as structural and metabolic support for neurons is known since the beginning of the last century. Because of their strategic localization between neurons and capillaries they can monitor and control the level of synaptic activity by providing energetic metabolites to neurons and remove excess of neurotransmitters. During the last two decades number of papers further established that the astrocytic plasma-membrane G-protein coupled receptors (GPCR) can sense external inputs (such as the spillover of neurotransmitters) and transduce them as intracellular calcium elevations and release of chemical transmitters such as glutamate. The chemokine CXCR4 receptor is a GPCR widely expressed on glial cells (especially astrocytes and microglia). Activation of the astrocytic CXCR4 by its natural ligand CXCL12 (or SDF1 alpha) results in a long chain of intracellular and extracellular events (including the release of the pro-inflammatory cytokine TNFalpha and prostanglandins) leading to glutamate release. The emerging role of CXCR4-CXCL12 signalling axis in brain physiology came from the recent observation that glutamate in astrocytes is released via a regulated exocytosis process and occurs with a relatively fast time-scale, in the order of few hundred milliseconds. Taking into account that astrocytes are electrically non-excitable and thus exocytosis rely only on a signalling pathway that involves the release Ca(2+) from the internal stores, these results suggested a close relationship between sites of Ca(2+) release and those of fusion events. Indeed, a recent observation describes structural sub-membrane microdomains where fast ER-dependent calcium elevations occur in spatial and temporal correlation with fusion events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of microglia is a well-documented phenomenon associated with diverse pathological conditions of the central nervous system. In order to investigate the involvement of microglial cells in the neurotoxic action of the heavy metal compound trimethyltin, three-dimensional brain cell cultures were treated during an early developmental period, using concentrations at or below the limit of cytotoxicity. Microglial cells were studied by cytochemical staining, using horseradish peroxidase-conjugated B4 isolectin (GSI-B4). In parallel, neurotoxic effects were assessed by determining the content of synaptophysin and synapsin I, both in the total homogenates and in the synaptosomal fraction of the cultures. Changes in the content of the specific growth cone protein, GAP-43, were also analyzed. It was found that low, non-cytotoxic concentrations of TMT (10(-9) to 10(-8) M) caused a significant increase in the number and/or the clustering of microglial cells. A decrease in the synaptic protein (synapsin I, synaptophysin) content was detected at 10(-8) M of TMT in synaptosomal fractions, whereas in the total homogenates, changes in synaptic proteins and GAP-43 were observed only at the cytotoxic TMT concentration (10(-6) M). Although it remains to be shown whether the microglial response is caused by direct or indirect action of TMT, the present findings show that microglial responsiveness can be detected prior to any sign of neuronal degeneration, and may serve as a sensitive indicator for heavy metal neurotoxicity in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytokine tumor necrosis factor-alpha (TNFalpha) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFalpha production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702-710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFalpha is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFalpha-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous beta-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of beta-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFalpha evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFalpha-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFalpha-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATP, released by both neurons and glia, is an important mediator of brain intercellular communication. We find that selective activation of purinergic P2Y1 receptors (P2Y1R) in cultured astrocytes triggers glutamate release. By total internal fluorescence reflection imaging of fluorescence-labeled glutamatergic vesicles, we document that such release occurs by regulated exocytosis. The stimulus-secretion coupling mechanism involves Ca2+ release from internal stores and is controlled by additional transductive events mediated by tumor necrosis factor-alpha (TNFalpha) and prostaglandins (PG). P2Y1R activation induces release of both TNFalpha and PGE2 and blocking either one significantly reduces glutamate release. Accordingly, astrocytes from TNFalpha-deficient (TNF(-/-)) or TNF type 1 receptor-deficient (TNFR1(-/-)) mice display altered P2Y1R-dependent Ca2+ signaling and deficient glutamate release. In mixed hippocampal cultures, the P2Y1R-evoked process occurs in astrocytes but not in neurons or microglia. P2Y1R stimulation induces Ca2+ -dependent glutamate release also from acute hippocampal slices. The process in situ displays characteristics resembling those in cultured astrocytes and is distinctly different from synaptic glutamate release evoked by high K+ stimulation as follows: (a) it is sensitive to cyclooxygenase inhibitors; (b) it is deficient in preparations from TNF(-/-) and TNFR1(-/-) mice; and (c) it is inhibited by the exocytosis blocker bafilomycin A1 with a different time course. No glutamate release is evoked by P2Y1R-dependent stimulation of hippocampal synaptosomes. Taken together, our data identify the coupling of purinergic P2Y1R to glutamate exocytosis and its peculiar TNFalpha- and PG-dependent control, and we strongly suggest that this cascade operates selectively in astrocytes. The identified pathway may play physiological roles in glial-glial and glial-neuronal communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minocycline has been shown to inhibit microglia reactivity, and to decrease the severity and progression of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. It remained to be examined whether minocycline was also able to promote remyelination. In the present study, myelinating aggregating brain cell cultures were used as a model to study the effects of minocycline on microglial reactivity, demyelination, and remyelination. Cultures were treated simultaneously with two inflammatory agents, interferon-γ (IFN-γ) and lipopolysaccharide (LPS), which caused an inflammatory response accompanied by demyelination. The inflammatory response was characterized by microglial reactivity, upregulation of inflammatory cytokines and iNOS, and increased phophorylation of P38 and P44/42 mitogen activated protein (MAP) kinases. Minocycline inhibited microglial reactivity, and attenuated the increased phophorylation of P38 and P44/42 MAP kinases. Demyelination, determined by a decrease in myelin basic protein (MBP) content and immunoreactivity 48 h after the treatment with the inflammatory agents, was not prevented by minocycline. However, 1 week after demyelination was assessed, the MBP content was restored in presence of minocycline, indicating that remyelination was promoted. Concomitantly, in cultures treated with minocycline, the markers of oligodendrocyte precursors cells (OPCs) and immature oligodendrocytes NG2 and O4, respectively, were decreased compared to cultures treated with the inflammatory agents only. These results suggest that minocycline attenuates microglial reactivity and favors remyelination by enhancing the differentiation of OPCs and immature oligodendrocytes.