948 resultados para METRIC LIE ALGEBRA
Resumo:
It is known that the Camassa–Holm (CH) equation describes pseudo-spherical surfaces and that therefore its integrability properties can be studied by geometrical means. In particular, the CH equation admits nonlocal symmetries of “pseudo-potential type”: the standard quadratic pseudo-potential associated with the geodesics of the pseudo-spherical surfaces determined by (generic) solutions to CH, allows us to construct a covering π of the equation manifold of CH on which nonlocal symmetries can be explicitly calculated. In this article, we present the Lie algebra of (first-order) nonlocal π-symmetries for the CH equation, and we show that this algebra contains a semidirect sum of the loop algebra over sl(2,R) and the centerless Virasoro algebra. As applications, we compute explicit solutions, we construct a Darboux transformation for the CH equation, and we recover its recursion operator. We also extend our results to the associated Camassa–Holm equation introduced by J. Schiff.
Resumo:
Introdução: Embora alterações estruturais cerebrais na esquizofrenia venham sendo repetidamente demonstradas em estudos de ressonância magnética (RM), ainda permanece incerto se tais alterações são estáticas ou progressivas. Enquanto estudos longitudinais são tradicionalmente utilizados na avaliação da questão da progressão, estudos transversais de neuroimagem comparando diretamente pacientes com esquizofrenia crônica e de primeiro episódio a controles saudáveis têm sido bastante raros até o presente. Com o recente interesse em meganálises combinando dados multicêntricos de RM visando-se a maior poder estatístico, o presente estudo multicêntrico de morfometria baseada no voxel (VBM) foi realizado para avaliar os padrões de alterações estruturais cerebrais segundo os diferentes estágios da doença, bem como para avaliar quais (se alguma) dessas alterações se correlacionariam especificamente a moderadores clínicos potenciais, tais como exposição cumulativa a antipsicóticos, tempo de doença e gravidade da doença. Métodos: Selecionou-se uma ampla amostra de pacientes com esquizofrenia (161, sendo 99 crônicos e 62 de primeiro episódio) e controles (151) a partir de quatro estudos prévios de RM (1,5T) realizados na mesma região do Brasil. O processamento e análise das imagens foi realizado usando-se o software Statistical Parametric Mapping (SPM8) com emprego do algoritmo DARTEL (diffeomorphic anatomical registration through exponentiated Lie algebra). Os efeitos de grupo sobre os volumes regionais de substância cinzenta (SC) foram analisados através de comparações voxel-a-voxel por análises de covariância em modelos lineares gerais, inserindo-se, em todas as análises, o volume total de SC, protocolo do scanner, idade e sexo como variáveis de confusão. Por fim, foram realizadas análises de correlação entre os aludidos moderadores clínicos potenciais e os volumes cerebrais globais e regionais. Resultados: Os pacientes com esquizofrenia de primeiro episódio apresentaram reduções volumétricas sutis em comparação aos controles, em um circuito neural circunscrito e identificável apenas em análises SVC (small volume correction) [p < 0.05, com correção family-wise error (FWE)], incluindo a ínsula, estruturas têmporo-límbicas e corpo estriado. Os pacientes crônicos, por outro lado, apresentaram um padrão de alterações extensas comparativamente aos controles, envolvendo os córtices frontais orbitais, superiores e inferiores bilateralmente, córtex frontal médio direito, ambos os córtices cingulados anteriores, ambas as ínsulas, e os córtices temporais superior e médio direitos (p < 0.05, análises whole-brain com correção FWE). Foram encontradas correlações negativas significantes entre exposição cumulativa a antipsicóticos e volumes globais de SC e substância branca nos pacientes com esquizofrenia, embora as correlações com reduções regionais não tenham sido significantes. Detectaram-se, ainda, correlações negativas significantes entre tempo de doença e volumes regionais relativos da ínsula esquerda, córtex cingulado anterior direito e córtices pré-frontais dorsolaterais nas análises SVC para os grupos conjuntos (esquizofrenia crônica e de primeiro episódio). Conclusão: Os achados supracitados indicam que: a) as alterações estruturais associadas com o diagnóstico de esquizofrenia são mais disseminadas na forma crônica em comparação à de primeiro episódio; b) reduções volumétricas regionais em áreas específicas do cérebro podem variar em função do tempo de doença; c) a exposição cumulativa a antipsicóticos associou-se a alterações volumétricas globais, e não regionais
Resumo:
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30
Resumo:
Special Issue in honor of Prof. Hans-Bjørn Foxby
Resumo:
Doutoramento em Gestão
Resumo:
Following the seminal work of Zhuang, connected Hopf algebras of finite GK-dimension over algebraically closed fields of characteristic zero have been the subject of several recent papers. This thesis is concerned with continuing this line of research and promoting connected Hopf algebras as a natural, intricate and interesting class of algebras. We begin by discussing the theory of connected Hopf algebras which are either commutative or cocommutative, and then proceed to review the modern theory of arbitrary connected Hopf algebras of finite GK-dimension initiated by Zhuang. We next focus on the (left) coideal subalgebras of connected Hopf algebras of finite GK-dimension. They are shown to be deformations of commutative polynomial algebras. A number of homological properties follow immediately from this fact. Further properties are described, examples are considered and invariants are constructed. A connected Hopf algebra is said to be "primitively thick" if the difference between its GK-dimension and the vector-space dimension of its primitive space is precisely one . Building on the results of Wang, Zhang and Zhuang,, we describe a method of constructing such a Hopf algebra, and as a result obtain a host of new examples of such objects. Moreover, we prove that such a Hopf algebra can never be isomorphic to the enveloping algebra of a semisimple Lie algebra, nor can a semisimple Lie algebra appear as its primitive space. It has been asked in the literature whether connected Hopf algebras of finite GK-dimension are always isomorphic as algebras to enveloping algebras of Lie algebras. We provide a negative answer to this question by constructing a counterexample of GK-dimension 5. Substantial progress was made in determining the order of the antipode of a finite dimensional pointed Hopf algebra by Taft and Wilson in the 1970s. Our final main result is to show that the proof of their result can be generalised to give an analogous result for arbitrary pointed Hopf algebras.
Resumo:
Studying moduli spaces of semistable Higgs bundles (E, \phi) of rank n on a smooth curve C, a key role is played by the spectral curve X (Hitchin), because an important result by Beauville-Narasimhan-Ramanan allows us to study isomorphism classes of such Higgs bundles in terms of isomorphism classes of rank-1 torsion-free sheaves on X. This way, the generic fibre of the Hitchin map, which associates to any semistable Higgs bundle the coefficients of the characteristic polynomial of \phi, is isomorphic to the Jacobian of X. Focusing on rank-2 Higgs data, this construction was extended by Barik to the case in which the curve C is reducible, one-nodal, having two smooth components. Such curve is called of compact type because its Picard group is compact. In this work, we describe and clarify the main points of the construction by Barik and we give examples, especially concerning generic fibres of the Hitchin map. Referring to Hausel-Pauly, we consider the case of SL(2,C)-Higgs bundles on a smooth base curve, which are such that the generic fibre of the Hitchin map is a subvariety of the Jacobian of X, the Prym variety. We recall the description of special loci, called endoscopic loci, such that the associated Prym variety is not connected. Then, letting G be an affine reductive group having underlying Lie algebra so(4,C), we consider G-Higgs bundles on a smooth base curve. Starting from the construction by Bradlow-Schaposnik, we discuss the associated endoscopic loci. By adapting these studies to a one-nodal base curve of compact type, we describe the fibre of the SL(2,C)-Hitchin map and of the G-Hitchin map, together with endoscopic loci. In the Appendix, we give an interpretation of generic spectral curves in terms of families of double covers.
Resumo:
Tarea (A):(...) Trataremos de extender a Sp(n,1) los resultados conseguidos sobre la imagen del homomorfismo de Lepowsky cuando G es SO(n,1) ó SU(n,1). (...) Tarea (B): (...) Para todo grupo de Lie de rango uno, con rango (G) = rango (K), los elementos del álgebra B son W-invariantes y que este resultado ya ha sido establecido para los grupos SO(2n,1) y SU(n,1); durante el período correspondiente a este subsidio esperamos extender este resultado a todo grupo de Lie de rango uno con rango (G) = rango (K). Tarea (C): Durante este período esperamos también avanzar en la determinación del dual unitario del grupo Spin (2n,C).
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
Motivated by application of twisted current algebra in description of the entropy of Ads(3) black hole, we investigate the simplest twisted current algebra sl(3, c)(k)((2)). Free field representation of the twisted algebra, and the corresponding twisted Sugawara energy-momentum tensor are obtained by using three (beta, gamma) pairs and two scalar fields. Primary fields and two screening currents of the first kind are presented. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.
Resumo:
Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres.
Resumo:
This thesis entitled Geometric algebra and einsteins electron: Deterministic field theories .The work in this thesis clarifies an important part of Koga’s theory.Koga also developed a theory of the electron incorporating its gravitational field, using his substitutes for Einstein’s equation.The third chapter deals with the application of geometric algebra to Koga’s approach of the Dirac equation. In chapter 4 we study some aspects of the work of mendel sachs (35,36,37,).Sachs stated aim is to show how quantum mechanics is a limiting case of a general relativistic unified field theory.Chapter 5 contains a critical study and comparison of the work of Koga and Sachs. In particular, we conclude that the incorporation of Mach’s principle is not necessary in Sachs’s treatment of the Dirac equation.
Resumo:
Let * be an involution of a group G extended linearly to the group algebra KG. We prove that if G contains no 2-elements and K is a field of characteristic p, 0 2, then the *-symmetric elements of KG are Lie nilpotent (Lie n-Engel) if and only if KG is Lie nilpotent (Lie n-Engel). (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.