858 resultados para MAINSTREAM CIGARETTE-SMOKE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.
Resumo:
Free radicals are present in cigarette smoke and can have a negative effect on human health by attacking lipids, nucleic acids, proteins and other biologically important species. However, because of the complexity of the tobacco smoke system and the dynamic nature of radicals, little is known about the identity of the radicals, and debate continues on the mechanisms by which those radicals are produced. In this study, acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5- tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography- mass spectrometry (LC-MS). Simulations of acetyl radical generation were performed using Matlab and the Master Chemical Mechanism (MCM) programs. A range of 10- 150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a GF/F particle filter was placed before the trapping zone. Computational simulations show that NO/NO2 reacts with isoprene, initiating chain reactions to produce a hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. With initial concentrations of NO, acetaldehyde, and isoprene in a real-world cigarette smoke scenario, these mechanisms can account for the full amount of acetyl radical detected experimentally. This study contributes to the overall understanding of the free radical generation in gas phase cigarette smoke.
Resumo:
Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.
Resumo:
Recent research has described the restructuring of particles upon exposure to organic vapours; however, as yet hypotheses able to explain this phenomenon are limited. In this study, a range of experiments were performed to explore different hypotheses related to carbonaceous particle restructuring upon exposure to organic and water vapours, such as: the effect of surface tension, the role of organics in flocculating primary particles, as well as the ability of vapours to “wet” the particle surface. The change in mobility diameter (dm) was investigated for a range carbonaceous particle types (diesel exhaust, petrol exhaust, cigarette smoke, candle smoke, particles generated in a heptane/toluene flame, and wood smoke particles) exposed to different organic (heptane, ethanol, and dimethyl sulfoxide/water (1:1 vol%) mixture) and water vapours. Particles were first size-selected and then bubbled through an impinger (bubbler) containing either an organic solvent or water, where particles trapped inside rising bubbles were exposed to saturated vapours of the solvent in the impinger. The size distribution of particles was simultaneously measured upstream and downstream from the impinger. A size-dependent reduction in dm was observed when bubbling diesel exhaust, particles generated in a heptane/toluene flame, and candle smoke particles through heptane, ethanol and a dimethyl sulfoxide/water (1:1 vol %) mixture. In addition, the size distributions of particles bubbled through an impinger were broader. Moreover, an increase of the geometric standard deviation (σ) of the size distributions of particles bubbled through an impinger was also found to be size-dependent. Size-dependent reduction in dm and an increase of σ indicate that particles undergo restructuring to a more compact form, which was confirmed by TEM analysis. However, bubbling of these particles through water did not result in a size-dependent reduction in dm, nor in an increase of σ. Cigarette smoke, petrol exhaust, and wood smoke particles did not result in any substantial change in dm, or σ, when bubbled through organic solvents or water. Therefore, size-dependent reduction in the dm upon bubbling through organic solvents was observed only for particles that had a fractal-like structure, whilst particles that were liquid or were assumed to be spherical did not exhibit any reduction in dm. Compaction of fractal-like particles was attributed to the ability of condensing vapours to efficiently wet the particles. Our results also show that the presence of an organic layer on the surface of fractal-like particles, or the surface tension of the condensed liquid do not influence the extent of compaction.
Resumo:
Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to particulate matter (PM). Recently, a new profluorescent nitroxide molecular probe (BPEAnit) developed at QUT was applied in an entirely novel, rapid and non-cell based assay for assessing the oxidative potential of particles (i.e. potential of particles to induce oxidative stress). The technique was applied on particles produced by several combustion sources, namely cigarette smoke, diesel exhaust and wood smoke. One of the main findings from the initial studies undertaken at QUT was that the oxidative potential per PM mass significantly varies for different combustion sources as well as the type of fuel used and combustion conditions. However, possibly the most important finding from our studies was that there was a strong correlation between the organic fraction of particles and the oxidative potential measured by the PFN assay, which clearly highlights the importance of organic species in particle-induced toxicity.
Resumo:
This project was conducted at Lithgow Correctional Centre (LCC), NSW, Australia. Air quality field measurements were conducted on two occasions (23-27 May 2012, and 3-8 December 2012), just before and six months after the introduction of smoke free buildings policies (28 May 2012) at the LCC, respectively. The main aims of this project were to: (1) investigate the indoor air quality; (2) quantify the level of exposure to environmental tobacco smoke (ETS); (3) identify the main indoor particle sources; (4) distinguish between PM2.5 / particle number from ETS, as opposed to other sources; and (5) provide recommendations for improving indoor air quality and/or minimising exposure at the LCC. The measurements were conducted in Unit 5.2A, Unit 5.2B, Unit 1.1 and Unit 3.1, together with personal exposure measurements, based on the following parameters: -Indoor and outdoor particle number (PN) concentration in the size range 0.005-3 µm -Indoor and outdoor PM2.5 particle mass concentration -Indoor and outdoor VOC concentrations -Personal particle number exposure levels (in the size range 0.01-0.3 µm) -Indoor and outdoor CO and CO2 concentrations, temperature and relative humidity In order to enhance the outcomes of this project, the indoor and outdoor particle number (PN) concentrations were measured by two additional instruments (CPC 3787) which were not listed in the original proposal.
Resumo:
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.
Resumo:
Several cell-free assays are currently used to quantify and detect the Reactive Oxygen Species (ROS). All of them have certain limitations, do not provide direct comparison of results and, to date, none of these assays have been acknowledged as the most suitable acellular assay and none has yet been adopted for investigation of potential PM toxicity. These assays include DTT, ascorbic acid, DCFHDA and PFN assays which have been used in measurements of the particles generated from various combustion sources such as diesel engine, wood smoke (or biomass burning) and cigarette smoke, as well as for outdoor measurements. All the probes use different units for expressing redox properties of PM. Also, their reactivity is being triggered by different types of ROS. This limits the direct comparison of the results that are reporting the toxicity of the same aerosol type measured with various probes. This study is evaluating and comparing the various assays in order to develop deeper understanding of their capabilities, selectivity as well as improve understanding of the underlying chemical mechanisms. Keywords: DTT, DCFH-DA, PFN, BPEA-nit, Ascorbic acid, oxidative potential
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Aortic valve stenosis (AS) is an active disease process akin to atherosclerosis, with chronic inflammation, lipid accumulation, extracellular matrix remodeling, fibrosis, and extensive calcification of the valves being characteristic features of the disease. The detailed mechanisms and pathogenesis of AS are still incompletely understood, however, and pharmacological treatments targeted toward components of the disease are not currently available. In this thesis project, my coworkers and I studied stenotic aortic valves obtained from 86 patients undergoing valve replacement for clinically significant AS. Non-stenotic control valves (n=17) were obtained from patients undergoing cardiac transplantation or from organ donors without cardiac disease. We identified a novel inflammatory factor, namely mast cell, in stenotic aortic valves and present evidence showing that this multipotent inflammatory cell may participate in the pathogenesis of AS. Using immunohistochemistry and double immunofluorescence stainings, we found that a considerable number of mast cells accumulate in stenotic valves and, in contrast to normal valves, the mast cells in diseased valves were in an activated state. Moreover, valvular mast cells contained two effective proteases, chymase and cathepsin G, which may participate in adverse remodeling of the valves either by inducing fibrosis (chymase and cathepsin G) or by degrading elastin fibers in the valves (cathepsin G). As chymase and cathepsin G are both capable of generating the profibrotic peptide angiotensin II, we also studied the expression and activity of angiotensin-converting enzyme (ACE) in the valves. Using RT-PCR, imunohistochemistry, and autoradiography, we observed a significant increase in the expression and activity of ACE in stenotic valves. Besides mast cell-derived cathepsin G, aortic valves contained other elastolytic cathepsins (S, K, and V). Using immunohistochemistry, RT-PCR, and fluorometric microassay, we showed that the expression and activity of these cathepsins were augmented in stenotic valves. Furthermore, in stenotic but not in normal valves, we observed a distinctive pattern of elastin fiber degradation and disorganization. Importantly, this characteristic elastin degradation observed in diseased valves could be mimicked by adding exogenous cathepsins to control valves, which initially contained intact elastin fibers. In stenotic leaflets, the collagen/elastin ratio was increased and correlated positively with smoking, a potent AS-accelerating factor. Indeed, cigarette smoke could also directly activate cultured mast cells and fibroblasts. Next, we analyzed the expression and activity of neutral endopeptidase (NEP), which parallels the actions of ACE in degrading bradykinin (BK) and thus inactivates antifibrotic mechanisms in tissues. Real-time RT-PCR and autoradiography revealed NEP expression and activity to be enhanced in stenotic valves compared to controls. Furthermore, both BK receptors (1 and 2) were present in aortic valves and upregulated in stenotic leaflets. Isolated valve myofibroblasts expressed NEP and BK receptors, and their upregulation occurred in response to inflammation. Finally, we observed that the complement system, a source of several proinflammatory mediators and also a potential activator of valvular mast cells, was activated in stenotic valves. Moreover, receptors for the complement-derived effectors C3a and C5a were expressed in aortic valves and in cultured aortic valve myofibroblasts, in which their expression was induced by inflammation as well as by cigarette smoke. In conclusion, our findings revealed several novel mechanisms of inflammation (mast cells and mast cell-derived mediators, complement activation), fibrosis (ACE, chymase, cathepsin G, NEP), and elastin fiber degradation (cathepsins) in stenotic aortic valves and highlighted these effectors as possible pathogenic contributors to AS. These results support the notion of AS as an active process with inflammation and extracellular matrix remodeling as its key features and identify possible new targets for medical therapy in AS.
Resumo:
O óxido nítrico (NO) constitui um dos mais importantes mediadores intra e extracelulares e tem sido descrita sua participação tanto em processos biológicos como patológicos. Nosso objetivo foi verificar se o aumento ou a diminuição do óxido nítrico apresenta um efeito benéfico na proteção do tecido pulmonar no enfisema pulmonar induzido por fumaça de cigarro em camundongos. Para tanto, utilizamos o L-NAME (inibidor do NO), a L-arginina (substrato para a formação do NO) e os comparamos com a N-acetilcisteína (utilizada no tratamento da DPOC). Foram utilizados 65 camundongos C57BL/6 machos. Cinquenta animais foram divididos em grupos controle, fumaça de cigarro (FC), fumaça de cigarro + L-NAME (FC+LN), fumaça de cigarro + L-arginina (FC+LA), fumaça de cigarro + N-acetilcisteína (FC+NAC) (n=10, por grupo). Durante sessenta dias 40 animais foram expostos a 12 cigarros comerciais por dia, 3 vezes ao dia. Os grupos controle e FC foram submetidos à gavagens orogástricas com o veículo. Os grupos FC+LN, FC+LA, FC+NAC receberam gavagens diárias de L-NAME (60 mg/kg), L-arginina (120 mg/kg) ou NAC (200 mg/kg) respectivamente. Quinze animais (n = 5, por grupo) foram expostos ao ar ambiente e tratados apenas com L-NAME, L-arginina e NAC. Realizamos a análise do perfil das células do lavado broncoalveolar após o sacrifício. O pulmão direito foi removido para as análises histológicas do alargamento dos espaços aéreos determinado pela medida do diâmetro alveolar médio (Lm) e da densidade de superfície (Sv) dos septos alveolares. Os pulmões esquerdos foram removidos e homogeneizados para a as análises da atividade enzimática (SOD, CAT e MPO) e do sistema glutationa (GSH/GSSG), para a análise dos valores de nitrito e da expressão de 4-HNE, MMP-12, NE, TIMP-1, TIMP-2. Nossos resultados apontam que o L-NAME tem uma ação voltada para a matriz extracelular (via protease-antiprotease), enquanto que a L-arginina possui uma ação voltada para os oxidantes, assim como a NAC. Porém a NAC atua aumentando os níveis de glutationa, o que interfere diretamente nos oxidantes (via oxidante-antioxidante), enquanto a L-arginina interfere aumentando o burden oxidativo concomitante a um aumento da velocidade de ação dos oxidantes o que aumenta as células inflamatórias, mas diminui seu tempo de ação permitindo uma maior proteção. Concluímos que tanto o favorecimento para a produção e liberação do NOatravés da administração da L-arginina quanto a inibição do NOpela utilização do L-NAME foi eficiente na proteção do pulmão, apesar de não terem alcançado um resultado tão bom quanto a NAC.
Resumo:
Considerando que nos tempos atuais o hábito de fumar atingiu uma parcela significativa das adolescentes brasileiras e apesar de seus conhecidos efeitos deletérios sobre diversos órgãos, pouco se sabe da sua ação sobre os ovários. Este estudo teve como objetivo avaliar os efeitos da exposição à fumaça de cigarro sobre o ciclo estral e a morfologia ovariana. Para tal, foram utilizados camundongos da linhagem Swiss, cujo estudo teve início com o estudo do perfil das características da maturação sexual. Após o desmame, aos 21 dias de idade, a partir da abertura vaginal, o 1 estro e o início da ciclicidade foram acompanhados através da citologia vaginal. As características do ciclo estral foram determinadas no decorrer de doze semanas. O efeito da exposição à fumaça de cigarro 3R4F utilizou fêmeas Swiss de 35 dias de idade que foram subdivididos em dois grupos expostos à fumaça de cigarro (grupo 15E) e animais controles livres de fumaça (grupo 15C). A exposição ocorreu por 15 dias e ao final deste período, metade dos animais de cada grupo foi sacrificada e ovários direitos foram coletados. A outra metade permaneceu em observação durante 30 dias, sem exposição à fumaça, originando os grupos 45Ex e 45C. A citologia vaginal foi avaliada durante todo o período experimental. Ao final dos 30 dias, sangue e ovários direitos foram coletados. Estes foram pesados e processados por técnica de rotina histológica para análise morfológica. A caracterização dos eventos da puberdade estabeleceu o tempo de abertura vaginal com média de 33,60,24 de idade, o primeiro estro 39,42,58 dias de idade e o início da ciclicidade, com média de 39,51,19 dias de idade, concomitante com o primeiro estro. Além disso, os ciclos estrais apresentaram períodos de cinco dias com freqüência baixa da fase diestro. Com relação à exposição da fumaça de cigarro ocorreu aumento significativo na extensão dos ciclos estrais e uma forte tendência ao aumento de estros nos animais 45Ex, apesar de não ser significativa. O número e o diâmetro de folículos grandes foram maiores no 15E, enquanto o de corpos lúteos foi menor. Em relação ao grupo 45C, o 45Ex não se alterou, porém, mostrou uma discreta redução da massa ovariana, do número de folículos pequenos, do número e do diâmetro dos folículos médios, dos corpos lúteos e aumento de folículos atrésicos. A comparação entre controles, 15C e 45C e expostos, 15E e 45Ex, mostrou uma redução no diâmetro de folículos médios e grandes. O estudo do perfil das características reprodutivas de fêmeas Swiss é indispensável para modelos experimentais em pesquisa que fazem uso desta linhagem. Permitiu verificar que a exposição à fumaça de cigarro promove alteração do ciclo estral, da massa ovariana e antecipa alterações morfológicas tempo dependente que sinaliza a finalização da vida reprodutiva
Resumo:
O tabagismo e a obesidade são as principais causas de morbidade e mortalidade no mundo. Estudos populacionais relatam que fumantes, principalmente do sexo feminino, apresentam baixo índice de massa corporal. Porém, são escassos os estudos que avaliem a composição corporal de humanos e animais expostos a fumaça de cigarro, em especial nos adolescentes. Aos 35 d de idade, camundongos fêmeas foram expostos à fumaça de cigarros 3R4F (médio teor de nicotina), 8 h/dia, por 15 dias (F, n=12), paralelamente foi avaliado animais não expostos (C, n=12). Imediatamente após a exposição, metade dos animais de cada grupo foi sacrificada e a outra metade permaneceu em observação por 30dias. Durante todo o período experimental, a massa e comprimento corporal e ingestão alimentar foram avaliados. Ao final de cada período, os animais foram avaliados por DXA (Dual Energy X-ray Absorptiometry) e sacrificados por exsanguinação. Para avaliação e comprovação da exposição ao fumo foi utilizado a cotinina e morfologia do pulmão. No plasma foram avaliados colesterol, triglicerídeos, glicose, cotinina e insulina. Amostras de tecido adiposo intra-abdominal (IA) e subcutâneo (SC) foram coletadas e processadas por técnica histológica de rotina para análise morfológica. As expressões de PPAR, UCP2 e CPT1 foram avaliadas no tecido IA por western blotting. Durante a exposição, a massa, o comprimento corporal, a ingestão alimentar, a massa magra e a massa de tecido IA, bem como a glicose e o colesterol e a expressão de PPAR permaneceram inalterados. A expressão de UCP2 e CPT1, assim como a insulina circulante diminuiram. A gordura corporal total e do tronco, triglicerídeos e cotinina aumentaram. A análise morfológica não evidenciou alteração no tecido IA, mas, houve aumento do número e diminuição da área dos adipócitos no tecido SC. Após trinta de dias de abstinência a massa corporal, a massa e o número de adipócitos do tecido IA e a glicose aumentaram no grupo F, enquanto houve diminuição do colesterol, da área do adipócito IA e SC e do número do SC. Porém, sem alteração da ingestão, do comprimento corporal, da massa magra, da massa de gordura total e do tronco, da insulina e dos triglicerídeos e também da expressão de PPAR, UCP2 e CPT1 no IA. A exposição à fumaça de cigarro, em camundongos fêmeas jovens, desencadeou mudanças na adiposidade, que repercutiram de forma prejudicial e precoce sobre o metabolismo. Mesmo com a cessação do hábito de fumar os distúrbios metabólicos permanecem expressivos