981 resultados para MAGNETIC-STRUCTURES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different morphological single-crystal magnetites (Fe3O4) with a nanoporous structure, which exhibit excellent magnetic properties, have been synthesized by a polyol process. Both the type of polyol and the concentration of KOH play important roles in the formation of various morphologies. Cubic, truncated-octahedral, and octahedral shapes can be prepared by changing the concentration of the KOH solution in ethylene glycol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two novel coordination polymers Ni-4(CH3O)(4)(CH3OH)(4)(dca)(4) (1) and Co-4(CH3O)(4)(CH3OH)(4)(dca)(4) (2) have been synthesized by solvethermal reaction. X-ray single-crystal analysis reveals that the two complexes are isostrutural and possess 3D frameworks that are built from the M4O4(M= Ni (1) and Co (2)) cubanelike building blocks linked by dicyanamide (dca) bridges. The temperature dependence of the magnetic susceptibility was measured and the DC experiment data were fitted using the Heisenberg spin Hamiltonian.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two heterometallic chain coordination polymers with the chemical formula {[Cu2Mn2L2(CH3OH)(H2O)] center dot 0.5CH(3)OH center dot 0.5CH(3)CH(2)OH}(n) (1) and {[Cu2Co2L2(H2O)(2)] center dot H2O}(n) (2) have been synthesized and characterized by IR, UV spectroscopy and single-crystal X-ray structural analysis, where H4L = 2-hydroxy-3-[(E)-({2-[(2-hydroxybetizoyl)amino]ethyl}imino)methyl] benzoic acid. Magnetic measurements showed that the two compounds exhibit antiferromagnetic coupling exchange interactions, and satisfactory fittings to the observed magnetic susceptibility data were obtained by assuming a linear four-spin arrangement with two isotropic magnetic exchange interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Micromagnetic ripple structures on the surfaces of thick specimens of ultra-soft magnetic material having strong surface anisotropy Ks favouring out-of-surface magnetization have been calculated. These ripples have wavelengths of the order of 0.1 μm and extend to a depth ∼ √A/Ms, where A is the exchange constant and Ms is the saturation magnetization. The wave-vectors of the ripple structures are either transverse or parallel to the bulk magnetization. Both structures have lower energy than the one-dimensional structure discussed by O'Handley and Woods, and they exhibit stronger normal magnetization. The transverse structure requires a surface anisotropy Ks ≥ 0.80K0, where is that required for the one-dimensional structure. The threshold for longitudinal ripples is 0.84K0. It is suggested that the transverse structure probably constitutes the ground state. The magnitudes of Ks and A should be obtainable from measurements of the ripple wavelength and amplitude, and Ms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spatial structures of plasma parameters in a radio-frequency inductively coupled magnetic neutral loop discharge are investigated under various parameter variations using spatially resolved Langmuir probe measurements. A strong coupling between the plasma production region, in the neutral loop (NL) plane, and the axially remote substrate region is observed. The two regions are connected through the separatrices and therefore, spatial profiles in the substrate region are strongly influenced by the plasma production region and the structure of the separatrices. The electron temperature in the plasma production region peaks in the centre of the NL while the maximum in electron density is shifted radially inwards due to diffusion. Details of the structures in both regions, the production region and the substrate region, are determined through the position of the NL and the gradient of the inhomogeneous magnetic field around the NL confinement region. Parameter combinations are found providing higher plasma densities and better uniformity than in common inductively coupled plasmas without applying an additional magnetic field. The uniformity can be further improved using temporal variations of the magnetic field structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using direct numerical magneto-hydrodynamic (MHD) simulations, we demonstrate the evidence of two physically different types of vortex motions in the solar photosphere. Baroclinic motions of plasma in non-magnetic granules are the primary source of vorticity in granular regions of the solar photosphere, however, there is a significantly more efficient mechanism of vorticity production in strongly magnetised intergranular lanes. These swirly motions of plasma in intergranular magnetic field concentrations could be responsible for the generation of different types of MHD wave modes, for example, kink, sausage and torsional Alfven waves. These waves could transport a relevant amount of energy from the lower solar atmosphere and contribute to coronal plasma heating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new metal-organic based polymeric complexes, [Cu-4(O2CCH2CO2)(4)(L)].7H(2)O (1) and [CO2(O2CCH2CO2)(2)(L)].2H(2)O (2) [L = hexamethylenetetramine (urotropine)], have been synthesized and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 is a 1D coordination polymer comprising a carboxylato, bridged Cu-4 moiety linked by a tetradentate bridging urotropine. Complex 2 is a 3D coordination polymer made of pseudo-two-dimensional layers of Co(II) ions linked by malonate anions in syn-anticonformation which are bridged by bidentate urotropine in trans fashion, Complex 1 crystallizes in the orthothombic system, space group Pmmn, with a = 14,80(2) Angstrom, b = 14.54(2) Angstrom, c = 7.325(10) Angstrom, beta = 90degrees, and Z = 4. Complex 2 crystallizes in the orthorhombic system, space group Imm2, a = 7.584(11) Angstrom, b = 15.80(2) Angstrom, c = 6.939(13) Angstrom, beta = 90.10degrees(1), and Z = 4. Variable temperature (300-2 K) magnetic behavior reveals the existence of ferro- and antiferromagnetic interactions in 1 and only antiferromagnetic interactions in 2. The best fitted parameters for complex 1 are J = 13.5 cm(-1), J = -18.1 cm(-1), and g = 2.14 considering only intra-Cu-4 interactions through carboxylate and urotropine pathways. In case of complex 2, the fit of the magnetic data considering intralayer interaction through carboxylate pathway as well as interlayer interaction via urotropine pathway gave no satisfactory result at this moment using any model known due to considerable orbital contribution of Co(II) ions to the magnetic moment and its complicated structure. Assuming isolated Co(II) ions (without any coupling, J = 0) the shape of the chi(M)T curve fits well with experimental data except at very low temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three new carboxylato-bridged polymeric networks of Mn-II having molecular formula [Mn(ox)(dpyo)](n) (1), {[Mn-2(mal)(2)(bpee)(H2O)(2)]center dot 0.5(bpee)center dot 0.5(CH3OH)}n, (2) and {[Mn-3(btc)(2)(2,2'-bipy)(2)(H2O)(6)]center dot 4H(2)O}(n) (3) [dpyo, 4,4'-bipyridine N,N'dioxide; bpee, trans-1,2 bis(4-pyridyl) ethylene; 2,2'-bipy, 2,2'-bipyridine; ox = oxalate dianion; mal = malonate dianion; btc = 1,3,5-benzenetricarboxylate trianion] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature magnetic measurements. Structure determination of complex I reveals a covalent bonded 2D network containing bischelating oxalate and bridging dpyo; complex 2 is a covalent,bonded 3D polymeric architecture, formed by bridging malonate and bpee ligands, resulting in an open framework with channels filled by uncoordinated disordered bpee and methanol molecules. Whereas complex 3, comprising btc anions bound to three metal centers, is a 1D chain which further extends its dimensionality to 3D via pi-pi and H-bonding interactions. Low temperature magnetic measurements reveal the existence of weak antiferromagnetic interaction in all these complexes. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four trinuclear Cu(II) complexes, [(CuL1)(3)(mu(3)-OH)](NO3)(2) (1), [(CuL2)(3)(mu(3)-OH)](I)(2)center dot H2O (2), [(CuL3)(3)(mu(3)-OH)](I)(2) (3) and [(CuL1)(3)(mu(3)-OH)][(CuI3)-I-1] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2- one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)(3)(mu(3)-OH)](2+) in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH- group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH- group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = -J(12)S(1)S(2) - J(13)S(1)S(3) - J(23)S(2)S(3) has been used to interpret the magnetic data. The best fit parameters obtained are: J = - 54.98 cm(-1) g = 2.24 for 1; J = - 56.66 cm(-1), g = 2.19 for 2; J = -44.39 cm(-1), g = 2.16 for 3; J = - 89.92 cm(-1), g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three new basal-apical, mu(2)-1,1-azide bridged complexes, [CuL1(N-3)](2) (1), [CuL2(N-3)](2) (2) and [CuL3(N-3)]2 (3) with very similar tridentate Schiff base blocking ligands [L-1=N-(3-aminopropyl) salicylaldimine, L-2=7-amino-4-methyl-5-azahept-3-en-2-one and L-3=8-amino-4-methyl-5-azaoct-3-en-2-one) have been synthesised and their molecular structures determined by X-ray crystallography. In complex 1, there is no inter-dimer H-bonding. However, complexes 2 and 3 form two different supramolecular structures in which the dinuclear entities are linked by strong H-bonds giving one-dimensional systems. Variable-temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1 and 2 have antiferromagnetic coupling while 3 has ferromagnetic coupling which is also confirmed by EPR spectra at 4-300 K. Magnetostructural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds in complexes 2 and 3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis, characterisation, X-ray single crystal structures and magnetic properties of three new basal-apical mu(2)-1,1-azide-bridged complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2](2) (2) and [(CuLN3)-N-3](2) (3) with very similar tridentate Schiff-base blocking ligands {HL1 = N-[2-(ethylamino) ethyl] salicylaldimine; HL2 = 7-(ethylamino)-4-methyl-5-azahept-3-en-2-one; HL3 = 7-amino-4-methyl-5-azaoct-3-en-2-one} have been reported [complex 1: monoclinic, P2(1)/c, a = 8.390(2), b = 7.512(2), c = 19.822(6) Angstrom, beta = 91.45(5)degrees; complex 2: monoclinic, P2(1)/c, a = 8.070(9), b = 9.787(12), c = 15.743(17) A, beta = 98.467(10)degrees; complex 3: monoclinic, P2(1)/n, a = 5.884(7), b = 16.147(18), c = 11.901(12) Angstrom, beta = 90.050(10)degrees]. The structures consist of neutral dinuclear entities resulting from the pairing of two mononuclear units through end-on azide bridges connecting an equatorial position of one copper centre to an axial position of the other, The copper ions adopt a (4+1) square-based geometry in all the complexes. In complex 2, there is no inter-dimer hydrogen-bonding. However, complexes 1 and 3 form two different supramolecular structures in which the dinuclear entities are linked by H-bonds giving one-dimensional systems. Variable temperature (300-2 K) magnetic-susceptibility measurements and magnetisation measurements at 2 K reveal that all three complexes have antiferromagnetic coupling. Magneto-structural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).