980 resultados para Méthode de Runge-Kutta
Resumo:
Gaussian beam is the asymptotic solution of wave equation concentred at the central ray. The Gaussian beam ray tracing method has many advantages over ray tracing method. Because of the prevalence of multipath and caustics in complex media, Kirchhoff migration usually can not get satisfactory images, but Gaussian beam migration can get better results.The Runge-Kutta method is used to carry out the raytracing, and the wavefront construction method is used to calculate the multipath wavefield. In this thesis, a new method to determine the starting point and initial direction of a new ray is proposed take advantage of the radius of curvature calculated by dynamic ray tracing method.The propagation characters of Gaussian beam in complex media are investigated. When Gaussian beam is used to calculate the Green function, the wave field near the source was decomposed in Gaussian beam in different direction, then the wave field at a point is the superposition of individual Gaussian beams.Migration aperture is the key factor for Kirchhoff migration. In this thesis, the criterion for the choice of optimum aperture is discussed taking advantage of stationary phase analysis. Two equivalent methods are proposed, but the second is more preferable.Gaussian beam migration based on dip scanning and its procedure are developed. Take advantage of the travel time, amplitude, and takeoff angle calculated by Gaussian beam method, the migration is accomplished.Using the proposed migration method, I carry out the numerical calculation of simple theoretical model, Marmousi model and field data, and compare the results with that of Kirchhoff migration. The comparison shows that the new Gaussian beam migration method can get a better result over Kirchhoff migration, with fewer migration noise and clearer image at complex structures.
Resumo:
Esta tese insere-se na área da simulação de circuitos de RF e microondas, e visa o estudo de ferramentas computacionais inovadoras que consigam simular, de forma eficiente, circuitos não lineares e muito heterogéneos, contendo uma estrutura combinada de blocos analógicos de RF e de banda base e blocos digitais, a operar em múltiplas escalas de tempo. Os métodos numéricos propostos nesta tese baseiam-se em estratégias multi-dimensionais, as quais usam múltiplas variáveis temporais definidas em domínios de tempo deformados e não deformados, para lidar, de forma eficaz, com as disparidades existentes entre as diversas escalas de tempo. De modo a poder tirar proveito dos diferentes ritmos de evolução temporal existentes entre correntes e tensões com variação muito rápida (variáveis de estado activas) e correntes e tensões com variação lenta (variáveis de estado latentes), são utilizadas algumas técnicas numéricas avançadas para operar dentro dos espaços multi-dimensionais, como, por exemplo, os algoritmos multi-ritmo de Runge-Kutta, ou o método das linhas. São também apresentadas algumas estratégias de partição dos circuitos, as quais permitem dividir um circuito em sub-circuitos de uma forma completamente automática, em função dos ritmos de evolução das suas variáveis de estado. Para problemas acentuadamente não lineares, são propostos vários métodos inovadores de simulação a operar estritamente no domínio do tempo. Para problemas com não linearidades moderadas é proposto um novo método híbrido frequência-tempo, baseado numa combinação entre a integração passo a passo unidimensional e o método seguidor de envolvente com balanço harmónico. O desempenho dos métodos é testado na simulação de alguns exemplos ilustrativos, com resultados bastante promissores. Uma análise comparativa entre os métodos agora propostos e os métodos actualmente existentes para simulação RF, revela ganhos consideráveis em termos de rapidez de computação.
Resumo:
A two-dimensional vertically integrated hydrodynamic model coupled to a particle tracking model is applied to study the dispersion processes and residence time in Ria de Aveiro lagoon (Portugal). The only dispersion process that is considered in this study is the advection, according to the main characteristics of the local hydrodynamic. The particle tracking model computes the particles position at each time step, using a fourth-order Runge-Kutta integration method. The dispersion of passive particles released along the lagoon and in critical areas are studied in this work. The residence time is also determined for the entire lagoon. The results show that the mixture between particles coming from different channels of the lagoon is negligible in a time scale higher than 2 tidal cycles. The residence time for the lagoon central area is about 2 days, revealing a strong marine influence in this area. At the upper reaches of the channels were found values higher than 2 weeks.
Resumo:
We consider numerical methods for the compressible time dependent Navier-Stokes equations, discussing the spatial discretization by Finite Volume and Discontinuous Galerkin methods, the time integration by time adaptive implicit Runge-Kutta and Rosenbrock methods and the solution of the appearing nonlinear and linear equations systems by preconditioned Jacobian-Free Newton-Krylov, as well as Multigrid methods. As applications, thermal Fluid structure interaction and other unsteady flow problems are considered. The text is aimed at both mathematicians and engineers.
Resumo:
With the prospect of exascale computing, computational methods requiring only local data become especially attractive. Consequently, the typical domain decomposition of atmospheric models means horizontally-explicit vertically-implicit (HEVI) time-stepping schemes warrant further attention. In this analysis, Runge-Kutta implicit-explicit schemes from the literature are analysed for their stability and accuracy using a von Neumann stability analysis of two linear systems. Attention is paid to the numerical phase to indicate the behaviour of phase and group velocities. Where the analysis is tractable, analytically derived expressions are considered. For more complicated cases, amplification factors have been numerically generated and the associated amplitudes and phase diagnosed. Analysis of a system describing acoustic waves has necessitated attributing the three resultant eigenvalues to the three physical modes of the system. To do so, a series of algorithms has been devised to track the eigenvalues across the frequency space. The result enables analysis of whether the schemes exactly preserve the non-divergent mode; and whether there is evidence of spurious reversal in the direction of group velocities or asymmetry in the damping for the pair of acoustic modes. Frequency ranges that span next-generation high-resolution weather models to coarse-resolution climate models are considered; and a comparison is made of errors accumulated from multiple stability-constrained shorter time-steps from the HEVI scheme with a single integration from a fully implicit scheme over the same time interval. Two schemes, “Trap2(2,3,2)” and “UJ3(1,3,2)”, both already used in atmospheric models, are identified as offering consistently good stability and representation of phase across all the analyses. Furthermore, according to a simple measure of computational cost, “Trap2(2,3,2)” is the least expensive.
Resumo:
This work presents a numerical method suitable for the study of the development of internal boundary layers (IBL) and their characteristics for flows over various types of coastal cliffs. The IBL is an important meteorological occurrence for flows with surface roughness and topographical step changes. A two-dimensional flow program was used for this study. The governing equations were written using the vorticity-velocity formulation. The spatial derivatives were discretized by high-order compact finite differences schemes. The time integration was performed with a low storage fourth-order Runge-Kutta scheme. The coastal cliff (step) was specified through an immersed boundary method. The validation of the code was done by comparison of the results with experimental and observational data. The numerical simulations were carried out for different coastal cliff heights and inclinations. The results show that the predominant factors for the height of the IBL and its characteristics are the upstream velocity, and the height and form (inclination) of the coastal cliff. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A previously proposed model describing the trapping site of the interstitial atomic hydrogen in borate glasses is analyzed. In this model the atomic hydrogen is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported atomic hydrogen isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system of the observed decay kinetics was solved numerically using the Runge Kutta method. The experimental untrapping activation energy of 0.7 x 10(-19) J is in good agreement with the calculated results of dispersion interaction between the stabilized atomic hydrogen and the neighboring oxygen atoms at the vertices of hexagonal ring structures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
O objetivo deste trabalho é a obtenção de uma técnica para a modelagem otimizada de corpos submetidos a fluxos de alta velocidade, como aerofólios em escoamentos transônicos e outras geometrias aerodinâmicas. A técnica é desenvolvida através de expansões em séries de Fourier para um conjunto de equações diferenciais com interrelação com as condições de contorno, sendo uma equação para a parte superior e outra para a parte inferior do aerofólio. O método de integração temporal empregado baseia-se no esquema explícito de Runge-Kutta de 5 estágios para as equações da quantidade de movimento e na relação de estado para a pressão. Para a aproximação espacial adota-se um esquema em volumes finitos no arranjo co-localizado em diferenças centrais. Utiliza-se dissipação artificial para amortecer as frequências de alta ordem do erro na solução das equações linearizadas. A obra apresenta a solução de escoamentos bi e tridimensionais de fluidos compressíveis transônicos em torno de perfis aerodinâmicos. Os testes num´ericos são realizados para as geometrias do NACA 0012 e 0009 e asas tridimensionais usando as equações de Euler, para número de Mach igual a 0.8 e ® = 0o. Os resultados encontrados comparam favoravelmente com os dados experimentais e numéricos disponíveis na literatura.
Resumo:
Este trabalho visa desenvolver um modelo físico e matemático geral para os processos de extração sólido-líquido em fluxos contracorrente cruzados (CCC) que são utilizados na indústria de alimentos. Levam-se em consideração os processos principais (o transporte de massa entre as fases, difusão e convecção) envolvidos por todo o campo de extração, com uma abordagem bidimensional evolutiva, incluindo as zonas de carregamento, drenagem e as bandejas acumuladoras. O modelo matemático é formado por equações diferenciais parciais que determinam a alteração das concentrações nas fases poro e “bulk” em todo o campo de extração e equações diferenciais ordinárias (que refletem as evoluções das concentrações médias nas bandejas). As condições de contorno estabelecem as ligações entre os fluxos CCC da micela e matéria-prima e consideram, também, a influência das zonas de drenagem e carregamento. O algoritmo de resolução utiliza o método de linhas que transforma as equações diferenciais parciais em equações diferenciais ordinárias, que são resolvidas pelo método de Runge-Kutta. Na etapa de validação do modelo foram estabelecidos os parâmetros da malha e o passo de integração, a verificação do código com a lei de conservação da espécie e um único estado estacionário. Também foram realizadas a comparação com os dados experimentais coletados no extrator real e com o método de estágios ideais, a análise da influência de propriedades da matéria-prima nas características principais do modelo, e estabelecidos os dados iniciais do regime básico (regime de operação) Foram realizadas pesquisas numéricas para determinar: os regimes estacionário e transiente, a variação da constante de equilíbrio entre as fases, a variação do número de seções, a alteração da vazão de matéria-prima nas características de um extrator industrial e, também foram realizadas as simulações comparativas para diferentes tipos de matéria-prima (flocos laminados e flocos expandidos) usados amplamente na indústria. Além dessas pesquisas, o modelo também permite simular diferentes tipos de solventes. O estudo da capacidade de produção do extrator revelou que é necessário ter cuidado com o aumento da vazão da matéria-prima, pois um pequeno aumento desta pode causar grandes perdas de óleo tornando alto o custo da produção. Mesmo que ainda seja necessário abastecer o modelo com mais dados experimentais, principalmente da matéria-prima, os resultados obtidos estão em concordância com os fenômenos físico-químicos envolvidos no processo, com a lei de conservação de espécies químicas e com os resultados experimentais.
Resumo:
O objetivo deste trabalho é a simulação numérica de escoamentos incompressíveis bidimensionais em dutos com expansão brusca, considerando o raio de expansão de 3 : 1. As equações governantes implementadas são as de Navier, que junto com relações constitutivas para a tensão visam representar comportamentos não newtonianos. A integração temporal é feita usando o esquema explícito de Runge-Kutta com três estágios e de segunda ordem; as derivadas espaciais são aproximadas pelo método de diferenças finitas centrais. Escoamentos em expansões bruscas para fluidos newtonianos apresentam um número de Reynolds crítico, dependente do raio de expansão, na qual três soluções passam a ser encontradas: uma solução sim étrica instável e duas soluções assimétricas rebatidas estáveis. Aumentando o número de Reynolds, a solução passa a ser tridimensional e dependente do tempo. Dessa forma, o objetivo é encontrar as diferenças que ocorrem no comportamento do fluxo quando o fluido utilizado possui características não newtonianas. As relações constitutivas empregadas pertencem à classe de fluidos newtonianos generalizados: power-law, Bingham e Herschel-Bulkley. Esses modelos prevêem comportamentos pseudoplásticos e dilatantes, plásticos e viscoplásticos, respectivamente. Os resultados numéricos mostram diferenças entre as soluções newtonianas e não newtonianas para Reynolds variando de 30 a 300. Os valores de Reynolds críticos para o modelo power-law não apresentaram grandes diferenças em comparação com os da solução newtoniana. Algumas variações foram percebidas nos perfis de velocidade. Entretanto, os resultados obtidos com os modelos de Bingham e Herschel-Bulkley apresentaram diferenças significativas quando comparados com os newtonianos com o aumento do parâmetro adimensional Bingham; à medida que Bingham é aumentado, o tamanho dos vórtices diminui. Além disso, os perfis de velocidade apresentam diferenças relevantes, uma vez que o fluxo possui regiões onde o fluido se comporta como sólido.
Resumo:
As aplicações da mecânica vibratória vêm crescendo significativamente na análise de sistemas de suspensões e estruturas de veículos, dentre outras. Desta forma, o presente trabalho desenvolve técnicas para a simulação e o controle de uma suspensão de automóvel utilizando modelos dinâmicos com um, dois e três graus de liberdade. Na obtenção das equações do movimento para o sistema massa-mola-amortecedor, o modelo matemático utilizado tem como base a equação de Lagrange e a segunda lei de Newton, com condições iniciais apropriadas. A solução numérica destas equações é obtida através do método de Runge-Kutta de 4ª ordem, utilizando o software MATLAB. Para controlar as vibrações do sistema utilizou-se três métodos diferentes de controle: clássico, LQR e alocação de pólos. O sistema assim obtido satisfaz as condições de estabilidade e de desempenho e é factível para aplicações práticas, pois os resultados obtidos comparam adequadamente com dados analíticos, numéricos ou experimentais encontrados na literatura, indicando que técnicas de controle como o clássico podem ser simples e eficientes.
Resumo:
Este trabalho desenvolve um método numérico para a solução de escoamentos bidimensionais em torno de geometrias automobilísticas utilizando o método de diferenças finitas. O código computacional resolve as equações de Navier-Stokes e de Euler para uma distribuição adequada dos pontos discretos na malha. O método de integração empregado baseia-se no esquema explícito de Runge-Kutta de 3 estágios para as equações da quantidade de movimento e no de sub-relaxações sucessivas para a pressão na base Gauss-Seidel. Utilizou-se a técnica dos contornos virtuais em coordenadas cartesianas para resolver o escoamento sobre uma geometria simplificada, com a superfície coincidente com a malha computacional, e uma geometria automobilística mais complexa (BMW). Para a certificação da técnica empregada, optou-se pela utilização da teoria do escoamento potencial e pela comparação com dados experimentais encontrados na literatura e outros coletados em túnel de vento em escala reduzida. Houve dificuldade nesta comparação devido à falta de artigos relativos às simulações numéricas de escoamentos sobre automóveis e na aplicação da técnica dos contornos virtuais em geometrias complexas. Os resultados foram satisfatórios, com boas perspectivas para trabalhos futuros, contribuindo assim para o desenvolvimento da área.
Resumo:
Neste trabalho desenvolvemos uma metodologia numérica para a solução do escoamento em torno de um vórtice. Como a análise completa deste tipo de fluxo não é uma tarefa fácil, simplificações quanto ao escoamento e ao método numérico são necessárias. Também investigamos o comportamento das soluções das equações governantes (Navier-Stokes) quando o tempo tende ao infinito. Nesse sentido, dividimos este trabalho em duas partes: uma numérica e outra analítica. Com o intuito de resolver numericamente o problema, adotamos o método de diferenças finitas baseado na formulação incompressível das equações governantes. O método numérico para integrar essas equações é baseado no esquema de Runge- Kutta com três estágios. Os resultados numéricos são obtidos para cinco planos bidimensionais de um vórtice com números de Reynolds variando entre 1000 e 10000. Na parte analítica estudamos taxas de decaimento das soluções das equações de Navier-Stokes quando os dados iniciais são conhecidos. Também estimamos as taxas de decaimento para algumas derivadas das soluções na norma L2 e comparamos com as taxas correspondentes da solução da equação do calor.
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.