460 resultados para Lungfish Dentition
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Veterinarians are increasingly faced with examining and/or treating marine mammals during strandings or following requests from theme parks and zoos. A common request involving seals and sea lions regards dentition, either to age a wild animal or as part of the routine health of captive animals. The major problem with examining dentition is the lack of information available in the literature on normal dentition, particularly in juveniles, where eruption patterns may be used to age the animal. The information presented in this report details typical deciduous dentition in one Californian sea lion, a species commonly encountered in captivity.
Resumo:
The morphology and functional occlusion of the cheekteeth of 57 dugongs Dugong dugon of both sexes were examined using reflected light and scanning electron microscopy, radiography, hardness testing and skull manipulation. The functional morphology of the horny oral pads was also described. Mouthparts and body size allometry was examined for ontogenetic and gender-related trends. We found that the worn erupted cheekteeth of the dugong are simple flat pegs composed of soft degenerative dentine. During occlusion, the mandible moves in a mainly antero-lingual direction, with the possibility of mandibular retraction in some individuals. Anterior parts of the cheektooth row may become non-functional as a dugong ages. As a function of body size, dugong cheekteeth are extremely small compared with those of other mammalian herbivores, and with other hindgut fermenters in particular. The morphology, small size and occlusal variability of the cheekteeth suggest that there has not been strong selective pressure acting to maintain an effective dentition. In contrast, great development of the horny pads and associated skull parameters and their lower size variability suggest that the horny pads may have assumed the major role in food comminution.
Resumo:
Australian lungfish Neoceratodus forsteri may be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% or the total population are significantly larger (> 400 mu m(2)) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6-1.9 cycles deg(-1), n = 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.
Resumo:
The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.