991 resultados para Lung volume
Resumo:
Nine children surviving severe adult respiratory distress syndrome were studied 0.9 to 4.2 years after the acute illness. They had received artificial ventilation for a mean of 9.4 days, with an Fio2 greater than 0.5 during a mean time of 34 hours and maximal positive end expiratory pressure levels in the range of 8 to 20 cm H2O. Three children had recurrent respiratory symptoms (moderate exertional dyspnea and cough), and two had evidence of fibrosis on chest radiographs. All patients had abnormal lung function; the most prominent findings were ventilation inequalities, as judged by real-time moment ratio analysis of multibreath nitrogen washout curves (abnormal in eight of nine patients) and hypoxemia (seven of nine). Lung volumes were less abnormal; one patient had restrictive and two had obstructive disease. A significant correlation between intensive care measures (Fio2 greater than 0.5 in hours and peak inspiratory plateau pressure) and lung function abnormalities (moment ratio analysis and hypoxemia) was found. A possibly increased susceptibility of the pediatric age group to the primary insult or respiratory therapy of adult respiratory distress syndrome is suggested.
Resumo:
Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
Resumo:
Supporting patients with acute respiratory distress syndrome (ARDS), using a protective mechanical ventilation strategy characterized by low tidal volume and limitation of positive end-expiratory pressure (PEEP) is a standard practice in the intensive care unit. However, these strategies can promote lung de-recruitment, leading to the cyclic closing and reopening of collapsed alveoli and small airways. Recruitment maneuvers (RM) can be used to augment other methods, like positive end-expiratory pressure and positioning, to improve aerated lung volume. Clinical practice varies widely, and the optimal method and patient selection for recruitment maneuvers have not been determined, considerable uncertainty remaining regarding the appropriateness of RM. This review aims to discuss recent findings about the available types of RM, and compare the effectiveness, indications and adverse effects among them, as well as their impact on morbidity and mortality in ARDS patients. Recent developments include experimental and clinical evidence that a stepwise extended recruitment maneuver may cause an improvement in aerated lung volume and decrease the biological impact seen with the traditionally used sustained inflation, with less adverse effects. Prone positioning can reduce mortality in severe ARDS patients and may be an useful adjunct to recruitment maneuvers and advanced ventilatory strategies, such noisy ventilation and BIVENT, which have been useful in providing lung recruitment.
Resumo:
The aims of this study were to evaluate the forced oscillation technique (FOT) and pulmonary densitovolumetry in acromegalic patients and to examine the correlations between these findings. In this cross-sectional study, 29 non-smoking acromegalic patients and 17 paired controls were subjected to the FOT and quantification of lung volume using multidetector computed tomography (Q-MDCT). Compared with the controls, the acromegalic patients had a higher value for resonance frequency [15.3 (10.9-19.7) vs 11.4 (9.05-17.6) Hz, P=0.023] and a lower value for mean reactance [0.32 (0.21-0.64) vs 0.49 (0.34-0.96) cm H2O/L/s2, P=0.005]. In inspiratory Q-MDCT, the acromegalic patients had higher percentages of total lung volume (TLV) for nonaerated and poorly aerated areas [0.42% (0.30-0.51%) vs 0.25% (0.20-0.32%), P=0.039 and 3.25% (2.48-3.46%) vs 1.70% (1.45-2.15%), P=0.001, respectively]. Furthermore, the acromegalic patients had higher values for total lung mass in both inspiratory and expiratory Q-MDCT [821 (635-923) vs 696 (599-769) g, P=0.021 and 844 (650-945) vs 637 (536-736) g, P=0.009, respectively]. In inspiratory Q-MDCT, TLV showed significant correlations with all FOT parameters. The TLV of hyperaerated areas showed significant correlations with intercept resistance (rs=−0.602, P<0.001) and mean resistance (rs=−0.580, P<0.001). These data showed that acromegalic patients have increased amounts of lung tissue as well as nonaerated and poorly aerated areas. Functionally, there was a loss of homogeneity of the respiratory system. Moreover, there were correlations between the structural and functional findings of the respiratory system, consistent with the pathophysiology of the disease.
Resumo:
Se describe el caso de un varón de 59 años,con diagnóstico de enfermedad pulmonar obstructiva crónica (EPOC) severa, producto del consumo de cigarrillo. En la evaluación, presenta deficiencias en la capacidad aeróbica, en el desempeño muscular, en la ventilación e intercambio gaseoso, con alteración de sus volúmenes pulmonares, las cuales le ocasionaron limitación funcional y restricción en la realización de las actividades de la vida diaria. Se inició un plan de cuidado y acondicionamiento físico, consistente en incrementar la fuerza y resistencia de miembros inferiores y superiores, entrenamiento de músculos respiratorios y un plan de educación individual y grupal acerca del conocimiento y manejo de la enfermedad, además se le brindó soporte psicoterapéutico. Los resultados del programa mostraron efectos positivos en su condición de salud, en general, y en la disminución de su limitación funcional.
Resumo:
INTRODUCTION: Cardiac and pulmonary manifestations of the Chagas disease (CD) affect between 20-30% of the infected subjects. The chronic Chagas cardiomyopathy (CCC) has some peculiarities such as arrhythmias and, especially heart failure (HF) and is potentially lethal due to left ventricular dysfunction. How respiratory disorders, patients get progressive loss of functional capacity, which contributes to a poor quality of life related to disease. Measurements of lung volume by the movement of the chest wall surface are an alternative evaluation of lung function and kinematics of complex thoracoabdominal for these patients. OBJECTIVE: evaluate the kinematics of the thoracoabdominal complex through the regional pulmonary volumes and to correlate with functional evaluation of the cardiorrespiratory system in patients with Chagas disease at rest. MATERIALS AND METHODS: a cross-section study with 42 subjects had been divided in 3 groups, 15 composed for patients with CCC, 12 patients with HF of different etiologies and 15 healthful presented control group. An optoelectronic plethysmography (POE), Minnesota questionnaire, six minute walk test, spirometer and manovacuometer was used. RESULTS: It was observed in the 6MWT where group CRL presented greater distance 464,93±44,63m versus Group HF with 399,58± 32,1m (p=0,005) and group CCC 404±68,24m (p=0,015), both the groups presented difference statistics with regard to Group CRL. In the manovacuometer 54,59±19,98; of the group CCC and 42,11±13,52 of group IC found group CRL presented 81,31±15,25 of the predicted versus, presenting in relation to group CRL. In the POE it observed a major contribution in abdominal compartment in patients with IC if compared like CCC and control groups. On the basis of the questionnaire of quality of life of Minessota, verified a low one groups CCC and IC 43,2±15,2 and 44,4±13,1, respectively (p<0,05) when compared with the control group (19,6±17,31). CONCLUSION: it seems that the patients with CCC possess same functional and respiratory characteristics, observed for the POE, 6MWT, manovacuometer and spirometer to the patients of group HF, being able to consider similar interventions for this complementary group as therapeutical of this neglected disease
Resumo:
Background: Obesity leads to alteration of lung volumes and capacities due to accumulation of fat in the chest wall and abdomen. Few studies have shown that weight loss induced by surgery improves lung function. Our objective was to evaluate the anthropometric development, pulmonary function, respiratory muscle, strength and endurance after weight loss induced by bariatric surgery. Methods: We evaluated in pre and post operative period variables of weight, BMI, NC, WHR and spirometric and respiratory pressure. Results: 39 subjects were evaluated, with age mean 35.9 ± 10.9 years, predominantly by women (76.3%). The weight mean decreased from 124.8 ± 17.5 kg to 88.8 ± 14.28 kg in post operative. The mean BMI ranged from 47,9 ± 5,6 Kg/m² to 34,3 ± 4,75 Kg/m². There was a significant increase in FVC from 3,63 ± 0,94 to 4,01±1,03, FEV1 from 3,03 ± 0,72 to 3,39 ± 0,85, FEF 25-75% from 3,41 ± 0,72 to 3,82 ± 0,94, PEF from 6,56 ± 1,47 to 7,81 ± 1,69, ERV from 0,35 ± 0,39 to 0,66 ± 0,38, MVV ranged from 103,43 ± 22,21 to 137,27 ± 29,84, all of them to p<0,01. The MIP and MEP showed no significant difference in pre and post operative. It was noted that for every centimeter reduced in neck circumference, an increase of 0.06 in FVC and 5.98 in MVV is observed. This is also observed in weight and BMI. Conclusion: We conclude that weight loss induced by bariatric surgery in obese provides a significant improvement in lung function and reduction of fat around the neck is more important in the generation of lung volume than the reduction of BMI
Resumo:
Objectives: To evaluate how to develop dynamic hyperinflation (DH) during exercise, the influence of pursed-lip breathing in (PLB) on breathing pattern and operating volume in patients with asthma. Methods: We studied 12 asthmatic patients in three moments: (1) anthropometry and spirometry, (2) submaximal incremental cycle ergometer test in spontaneous breathing and (3), submaximal incremental test on a cycle ergometer with PLB using the Opto-electronic plethysmography. Results: Evaluating the end-expiratory lung volume (EEV) during submaximal incremental test in spontaneous breathing, patients were divided into euvolume and hyperinflated. The RFL has increased significantly, the variation of the EEV group euvolume (1.4L) and decreased in group hyperinflated (0.272L). In group volume observed a significant increase of 140% in Vt at baseline, before exercise, comparing the RFL and spontaneous breathing. Hyperinflated group was observed that the RFL induced significant increases of Vt at all times of the test incremental baseline, 50%, 100% load and 66% recovery, 250%, 61.5% and 66% respectively. Respiratory rate decreased significantly with PLB at all times of the submaximal incremental test in the group euvolume. The speed of shortening of inspiratory muscles (VtRcp/Ti) in the hyperinflated increased from 1.6 ± 0.8L/s vs. 2.55 ± 0.9L/s, whereas in the RFL euvolume group ranged from 0.72 ± 0.31L/s vs. 0.65 ± 0.2L/s. The velocity of shortening of the expiratory muscles (VtAb/Te) showed similarity in response to RFL. In group hyperinflated varied vs. 0.89 ± 0.47 vs. 0.80 ± 0.36 and ± 1.17 ± 1L vs. 0.78 ± 0.6 for group euvolume. Conclusion: Different behavior in relation to EEV in patients with moderate asthma were observed, the HD and decreased EEV in response to exercise. The breathing pattern was modulated by both RFL performance as at home, making it more efficient
Resumo:
Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P .05). S100 group had a larger maximum lung volume, V30, compared with the MEC group (P .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: To estimate the response in lung growth and vascularity after fetal endoscopic tracheal occlusion for severe congenital diaphragmatic hernia in the prediction of neonatal survival.METHODS: Between January 2006 and December 2010, fetal lung parameters (observed-to-expected lung-to-head ratio; observed-to-expected lung volume; and contralateral lung vascularization index) were evaluated before fetal tracheal occlusion and were evaluated longitudinally every 2 weeks in 72 fetuses with severe isolated congenital diaphragmatic hernia. Thirty-five fetuses underwent fetal endoscopic tracheal occlusion and 37 cases did not.RESULTS: Survival rate was significantly higher in the fetal endoscopic tracheal occlusion group (54.3%) than in the no fetal endoscopic tracheal occlusion group (5.4%, P<.01). Fetal endoscopic tracheal occlusion resulted in a significant improvement in fetal lung size and pulmonary vascularity when compared with fetuses that did not go to the fetal intervention (increase of the observed-to-expected lung-to-head ratio, observed-to-expected total lung volume, and contralateral pulmonary vascularization index 56.2% compared with 0.3%, 37.9% compared with 0.1%, and 98.6% compared with 0.0%, respectively; P<.01). Receiver operating characteristic curves indicated that the observed-to-expected total fetal lung volume was the single best predictor of neonatal survival before fetal endoscopic tracheal occlusion (cutoff 0.23, area under the curve [AUC] 0.88, relative risk 5.3, 95% confidence interval [CI] 1.4-19.7). However, the contralateral lung vascularization index at 4 weeks after fetal endoscopic tracheal occlusion was more accurate in the prediction of neonatal outcome (cutoff 24.0%, AUC 0.98, relative risk 9.9, 95% CI 1.5-66.9) with the combination of observed-to-expected lung volumes and contralateral lung vascularization index at 4 weeks being the best predictor of outcome (AUC 0.98, relative risk 16.6, 95% CI 2.5-112.3).CONCLUSION: Fetal endoscopic tracheal occlusion improves survival rate by increasing the lung size and pulmonary vascularity in fetuses with severe congenital diaphragmatic hernia. The pulmonary response after fetal endoscopic tracheal occlusion can be used to predict neonatal survival. (Obstet Gynecol 2012; 119: 93-101) DOI: 10.1097/AOG.0b013e31823d3aea
Resumo:
OBJECTIVE: To evaluate the effects of 2 different doses of exogenous surfactant on pulmonary mechanics and on the regularity of pulmonary parenchyma inflation in newborn rabbits. METHOD: Newborn rabbits were submitted to tracheostomy and randomized into 4 study groups: the Control group did not receive any material inside the trachea; the MEC group was instilled with meconium, without surfactant treatment; the S100 and S200 groups were instilled with meconium and were treated with 100 and 200 mg/kg of exogenous surfactant (produced by Instituto Butantan) respectively. Animals from the 4 groups were mechanically ventilated during a 25-minute period. Dynamic compliance, ventilatory pressure, tidal volume, and maximum lung volume (P-V curve) were evaluated. Histological analysis was conducted using the mean linear intercept (Lm), and the lung tissue distortion index (SDI) was derived from the standard deviation of the means of the Lm. One-way analysis of variance was used with a = 0.05. RESULTS: After 25 minutes of ventilation, dynamic compliance (mL/cm H2O.kg) was 0.87 +/- 0.07 (Control); 0.49 +/- 0.04 (MEC*); 0.67 +/- 0.06 (S100); and 0.67 +/- 0.08 (S200), and ventilatory pressure (cm H2O) was 9.0 +/- 0.9 (Control); 16.5 +/- 1.7 (MEC*); 12.4 +/- 1.1 (S100); and 12.1 +/- 1.5 (S200). Both treated groups had lower Lm values and more homogeneity in the lung parenchyma compared to the MEC group: SDI = 7.5 +/- 1.9 (Control); 11.3 +/- 2.5 (MEC*), 5.8 +/- 1.9 (S100); and 6.7 +/- 1.7 (S200) (*P < 0.05 versus all the other groups). CONCLUSIONS: Animals treated with surfactant showed significant improvement in pulmonary mechanics and more regularity of the lung parenchyma in comparison to untreated animals. There was no difference in results after treatment with either of the doses used.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
BackgroundThis is an update of a Cochrane Review first published in The Cochrane Library 2008, Issue 3.Upper abdominal surgical procedures are associated with a high risk of postoperative pulmonary complications. The risk and severity of postoperative pulmonary complications can be reduced by the judicious use of therapeutic manoeuvres that increase lung volume. Our objective was to assess the effect of incentive spirometry compared to no therapy or physiotherapy, including coughing and deep breathing, on all-cause postoperative pulmonary complications andmortality in adult patients admitted to hospital for upper abdominal surgery.ObjectivesOur primary objective was to assess the effect of incentive spirometry (IS), compared to no such therapy or other therapy, on postoperative pulmonary complications and mortality in adults undergoing upper abdominal surgery.Our secondary objectives were to evaluate the effects of IS, compared to no therapy or other therapy, on other postoperative complications, adverse events, and spirometric parameters.Search methodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 8), MEDLINE, EMBASE, and LILACS (from inception to August 2013). There were no language restrictions. The date of the most recent search was 12 August 2013. The original search was performed in June 2006.Selection criteriaWe included randomized controlled trials (RCTs) of IS in adult patients admitted for any type of upper abdominal surgery, including patients undergoing laparoscopic procedures.Data collection and analysisTwo authors independently assessed trial quality and extracted data.Main resultsWe included 12 studies with a total of 1834 participants in this updated review. The methodological quality of the included studies was difficult to assess as it was poorly reported, so the predominant classification of bias was 'unclear'; the studies did not report on compliance with the prescribed therapy. We were able to include data from only 1160 patients in the meta-analysis. Four trials (152 patients) compared the effects of IS with no respiratory treatment. We found no statistically significant difference between the participants receiving IS and those who had no respiratory treatment for clinical complications (relative risk (RR) 0.59, 95% confidence interval (CI) 0.30 to 1.18). Two trials (194 patients) IS compared incentive spirometry with deep breathing exercises (DBE). We found no statistically significant differences between the participants receiving IS and those receiving DBE in the meta-analysis for respiratory failure (RR 0.67, 95% CI 0.04 to 10.50). Two trials (946 patients) compared IS with other chest physiotherapy. We found no statistically significant differences between the participants receiving IS compared to those receiving physiotherapy in the risk of developing a pulmonary condition or the type of complication. There was no evidence that IS is effective in the prevention of pulmonary complications.Authors' conclusionsThere is low quality evidence regarding the lack of effectiveness of incentive spirometry for prevention of postoperative pulmonary complications in patients after upper abdominal surgery. This review underlines the urgent need to conduct well-designed trials in this field. There is a case for large RCTs with high methodological rigour in order to define any benefit from the use of incentive spirometry regarding mortality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)