891 resultados para Lumbar spine, Intervertebral disc, Spinal ligaments, Validation, Finite element analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crack tip driving force of a crack growing from a pre-crack that is perpendicular to and terminating at an interface between two materials is investigated using a linear fracture mechanics theory. The analysis is performed both for a crack penetrating the interface, growing straight ahead, and for a crack deflecting into the interface. The results from finite element calculations are compared with asymptotic solutions for infinitesimally small crack extensions. The solution is found to be accurate even for fairly large amounts of crack growth. Further, by comparing the crack tip driving force of the deflected crack with that of the penetrating crack, it is shown how to control the path of the crack by choosing the adhesion of the interface relative to the material toughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper comprehensively analyzes the distortions of a circular wedge prism with 400 mm diameter in a scanner by method of optical-mechanical-thermal integrating analysis. The structure and intensity of the prism assembly is verified and checked, and the surface deformations of the prism under gravity load, as well as the thermo-elastic distortions of the prism, are analyzed in detail and evaluated, which is finally contrasted with the measured values of Zygo Mark interferometer. The results show: the maximal distortion of the prism assembly is 10 nm magnitude and the maximal stress is 0.441 Mpa, which has much tolerance to the precision requirement of structure and the admissible stress of material; the influence of heat effect on the surface deformations of prism is proved to be far greater than the influence of gravity load, so some strict temperature-controlled measures are to be considered when the scanner is used. (c) 2006 Elsevier GmbH. All rights reserved.