964 resultados para Lp(k)-Solutions
Resumo:
The oxygen potentials of four rare-earth metal – oxygen (RE–O: RE=Gd, Dy, Tb, Er) solid solutions have been measured by equilibration with yttrium – oxygen (Y–O) and titanium – oxygen (Ti–O) solid solutions. Rare-earth metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt at temperatures between 1093 and 1233 K. Homogeneous oxygen potential was established in the metallic samples through the fused salt, which contains some dissolved CaO. The metallic samples were analyzed for oxygen after quenching. The oxygen potentials of RE–O solid solutions were determined using either Y–O or Ti–O solid solution as the reference. This method enabled reliable measurement of extremely low oxygen potentials at high temperature (circa pO2=10−48 atm at 1173 K). It was found that the oxygen affinity of the metals decreases in the order: Y>Er>Dy>Tb>Gd>Ti. Values for the standard Gibbs energy of solution of oxygen in RE metals obtained in this study, permit assessment of the extent of deoxidation that can be achieved with various purification techniques. It may be possible to achieve an oxygen level of 10 mass ppm using an electrochemical deoxidation method.
Resumo:
The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.
Resumo:
The removal of oxygen from rare-earth metals (RE, RE=Gd, Tb, Dy, Er) by an electrochemical deoxidation method was investigated. A titanium basket containing the rare-earth metal sample, submerged in molten CaCl2 electrolyte, formed the cathode of an electrolysis cell. A high-purity graphite anode was used. The calcium metal produced at the cathode effectively deoxidized the rare-earth metal. Carbon monoxide and dioxide were generated at the graphite anode. Rare-earth metals containing more than 2000 mass ppm oxygen were deoxidized to 10–50 mass ppm level by electrolysis at 1189 K for 36 ks (10 h). Cyclic voltammetry was used to characterize the molten salt at different stages of the process. The effectiveness of the process is discussed with the aid of a chemical potential diagram for RE–O solid solutions. The new electrochemical technique is compared with the conventional deoxidation methods reported in the literature. The possibility of nitrogen removal from the rare-earth metals by the electrochemical method is outlined.
Resumo:
Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.
Resumo:
Riboflavin tetraacetate-catalyzed aerobic photooxidation of 1-(4-methoxyphenyl)ethanol was investigated as a model reaction under blue visible light in different soft gel materials, aiming to establish their potential as reaction vessels for photochemical transformations. Three strategies involving different degrees of organization of the catalyst within the gel network were explored, and the results compared to those obtained in homogeneous and micellar solutions. In general, physical entrapment of both the catalyst and the substrate under optimized concentrations into several hydrogel matrices (including low-molecular-weight and biopolymer-based gels) allowed the photooxidation with conversions between 55 and 100% within 120 min (TOF similar to 0.045-0.08 min(-1); k(obs) similar to 0.011-0.028 min(-1)), albeit with first-order rates ca. 1-3-fold lower than in solution under comparable non-stirred conditions. Remarkably, the organogel made of a cyclohexane-based bisamide gelator in CH3CN not only prevented the photodegradation of the catalyst but also afforded full conversion in less than 60 min (TOF similar to 0.167 min(-1); k(obs) similar to 0.073 min(-1)) without the need of additional proton transfer mediators (e. g., thiourea) as it occurs in CH3CN solutions. In general, the gelators could be recycled without detriment to their gelation ability and reaction rates. Moreover, kinetics could be fine-tuned according to the characteristics of the gel media. For instance, entangled fibrillar networks with relatively high mechanical strength were usually associated with lower reaction rates, whereas wrinkled laminated morphologies seemed to favor the reaction. In addition, the kinetics results showed in most cases a good correlation with the aeration efficiency of the gel media.
Resumo:
The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America
Resumo:
The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectroscopy/ imaging for regular geometries were compared with the well-established numerical models, which are based on the finite element method. Comparison among the analytical solutions obtained using zero boundary conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more accurate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast model. (C) 2013 Optical Society of America
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential.
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential. (C) 2013 AIP Publishing LLC.
Resumo:
A layer-wise theory with the analysis of face ply independent of lamination is used in the bending of symmetric laminates with anisotropic plies. More realistic and practical edge conditions as in Kirchhoff's theory are considered. An iterative procedure based on point-wise equilibrium equations is adapted. The necessity of a solution of an auxiliary problem in the interior plies is explained and used in the generation of proper sequence of two dimensional problems. Displacements are expanded in terms of polynomials in thickness coordinate such that continuity of transverse stresses across interfaces is assured. Solution of a fourth order system of a supplementary problem in the face ply is necessary to ensure the continuity of in-plane displacements across interfaces and to rectify inadequacies of these polynomial expansions in the interior distribution of approximate solutions. Vertical deflection does not play any role in obtaining all six stress components and two in-plane displacements. In overcoming lacuna in Kirchhoff's theory, widely used first order shear deformation theory and other sixth and higher order theories based on energy principles at laminate level in smeared laminate theories and at ply level in layer-wise theories are not useful in the generation of a proper sequence of 2-D problems converging to 3-D problems. Relevance of present analysis is demonstrated through solutions in a simple text book problem of simply supported square plate under doubly sinusoidal load.
Resumo:
In this article, we obtain explicit solutions of a system of forced Burgers equation subject to some classes of bounded and compactly supported initial data and also subject to certain unbounded initial data. In a series of papers, Rao and Yadav (2010) 1-3] obtained explicit solutions of a nonhomogeneous Burgers equation in one dimension subject to certain classes of bounded and unbounded initial data. Earlier Kloosterziel (1990) 4] represented the solution of an initial value problem for the heat equation, with initial data in L-2 (R-n, e(vertical bar x vertical bar 2/2)), as a series of self-similar solutions of the heat equation in R-n. Here we express the solutions of certain classes of Cauchy problems for a system of forced Burgers equation in terms of self-similar solutions of some linear partial differential equations. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
In this article, we obtain explicit solutions of a linear PDE subject to a class of radial square integrable functions with a monotonically increasing weight function |x|(n-1)e(beta vertical bar x vertical bar 2)/2, beta >= 0, x is an element of R-n. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n > 1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.
Resumo:
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.
Resumo:
In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.
Resumo:
In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed.