827 resultados para Long Distance Anaphora


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of premigratory modulation in gastric digestive performance was investigated in a long-distance migrant, the eastern curlew (Numenius madagascariensis), in eastern Australia. The rate of intake in the curlews was limited by the rate of digestion but not by food availability. It was hypothesized that before migration, eastern curlews would meet the increased energy demand by increasing energy consumption. It was predicted that (1) an increase in the rate of intake and the corresponding rate of gastric throughput would occur or (2) the gastric digestive efficiency would increase between the mid-nonbreeding and premigratory periods. Neither crude intake rate (the rate of intake calculated including inactive pauses; 0.22 g DM [grams dry mass] or 3.09 kJ min(-1)) nor the rate of gastric throughput (0.15 g DM or 2.85 kJ min(-1)) changed over time. Gastric digestive efficiency did not improve between the periods (91%) nor did the estimated overall energy assimilation efficiency (63% and 58%, respectively). It was concluded that the crustacean-dominated diet of the birds is processed at its highest rate and efficiency throughout a season. It appears that without a qualitative shift in diet, no increase in intake rate is possible. Accepting these findings at their face value poses the question of how and over what time period the eastern curlews store the nutrients necessary for the ensuing long, northward nonstop flight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marathon running is growing in popularity, and many diabetic patients are participating in various marathon races all over the world each year. This study aimed to investigate the prevalence and extent of glycemic excursions (hypo- and hyperglycemic) during a marathon run in patients with well-controlled diabetes mellitus using a continuous glucose monitoring system (CGMS). Five subjects with type 1 and one patient with type 2 diabetes mellitus were monitored with the Medtronic MiniMed CGMS during the 2002 Vienna City Marathon (n = 3) or the Fernwarme run (n = 3) long distance runs of 42.19/15.8 km. All six patients finished their course. The CGSM system was well tolerated in all patients over an average duration of 34 +/- 4.0 hours and it did not limit the patients' activities. The mean running time for the Vienna city marathon was 257 +/- 8 min (247 to 274 min) and for the Fernwarme run 134 +/- 118 min (113 to 150 min). A total of 1470 blood glucose measurements (mean 245 readings per subject) were performed. During and after the marathons frequent hypo and hyperglycemic episodes with and without clinical symptoms were measured. Our data confirm that the CGMS may help to identify asymptomatic hypoglycemia or hyperglycemia during and after a long distance run. The system may also be helpful to improve our understanding about the individual changes of glucose during and after a marathon and may protect hypoglycemic or hyperglycemic periods in future races.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological and genetic studies with the ramosus (rms) mutants in garden pea (Pisum sativum) and more axillary shoots (max) mutants in Arabidopsis (Arabidopsis thaliana) have shown that shoot branching is regulated by a network of long-distance signals. Orthologous genes RMS1 and MAX4 control the synthesis of a novel graft-transmissible branching signal that may be a carotenoid derivative and acts as a branching inhibitor. In this study, we demonstrate further conservation of the branching control system by showing that MAX2 and MAX3 are orthologous to RMS4 and RMS5, respectively. This is consistent with the longstanding hypothesis that branching in pea is regulated by a novel long-distance signal produced by RMS1 and RMS5 and that RMS4 is implicated in the response to this signal. We examine RMS5 expression and show that it is more highly expressed relative to RMS1, but under similar transcriptional regulation as RMS1. Further expression studies support the hypothesis that RMS4 functions in shoot and rootstock and participates in the feedback regulation of RMS1 and RMS5 expression. This feedback involves a second novel long-distance signal that is lacking in rms2 mutants. RMS1 and RMS5 are also independently regulated by indole-3-acetic acid. RMS1, rather than RMS5, appears to be a key regulator of the branching inhibitor. This study presents new interactions between RMS genes and provides further evidence toward the ongoing elucidation of a model of axillary bud outgrowth in pea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proliferation of legume nodule primordia is controlled by shoot-root signaling known as autoregulation of nodulation (AON). Mutants defective in AON show supernodulation and increased numbers of lateral roots. Here, we demonstrate that AON in soybean is controlled by the receptor-like protein kinase GmNARK (Glycine max nodule autoregulation receptor kinase), similar to Arabidopsis CLAVATA1 (CLV1). Whereas CLV1 functions in a protein complex controlling stem cell proliferation by short-distance signaling in shoot apices, GmNARK expression in the leaf has a major role in long-distance communication with nodule and lateral root primordia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.