984 resultados para Logic Programming


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Set-Sharing analysis, the classic Jacobs and Langen's domain, has been widely used to infer several interesting properties of programs at compile-time such as occurs-check reduction, automatic parallelization, flnite-tree analysis, etc. However, performing abstract uniflcation over this domain implies the use of a closure operation which makes the number of sharing groups grow exponentially. Much attention has been given in the literature to mitígate this key inefficiency in this otherwise very useful domain. In this paper we present two novel alternative representations for the traditional set-sharing domain, tSH and tNSH. which compress efficiently the number of elements into fewer elements enabling more efficient abstract operations, including abstract uniflcation, without any loss of accuracy. Our experimental evaluation supports that both representations can reduce dramatically the number of sharing groups showing they can be more practical solutions towards scalable set-sharing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visualization of program executions has been found useful in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding flow control and the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this paper we discuss techniques for visualizing program execution and data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the program execution behavior (control), the runtime valúes of the variables, and the runtime constraints. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, Le., techniques which are intended to help in reducing the complexity of the visual information.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper discusses some issues which arise in the dataflow analysis of constraint logic programming (CLP) languages. The basic technique applied is that of abstract interpretation. First, some types of optimizations possible in a number of CLP systems (including efficient parallelization) are presented and the information that has to be obtained at compile-time in order to be able to implement such optimizations is considered. Two approaches are then proposed and discussed for obtaining this information for a CLP program: one based on an analysis of a CLP metainterpreter using standard Prolog analysis tools, and a second one based on direct analysis of the CLP program. For the second approach an abstract domain which approximates groundness (also referred to as "definiteness") information (i.e. constraint to a single valué) and the related abstraction functions are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There have been several previous proposals for the integration of Object Oriented Programming features into Logic Programming, resulting in much support theory and several language proposals. However, none of these proposals seem to have made it into the mainstream. Perhaps one of the reasons for these is that the resulting languages depart too much from the standard logic programming languages to entice the average Prolog programmer. Another reason may be that most of what can be done with object-oriented programming can already be done in Prolog through the meta- and higher-order programming facilities that the language includes, albeit sometimes in a more cumbersome way. In light of this, in this paper we propose an alternative solution which is driven by two main objectives. The first one is to include only those characteristics of object-oriented programming which are cumbersome to implement in standard Prolog systems. The second one is to do this in such a way that there is minimum impact on the syntax and complexity of the language, i.e., to introduce the minimum number of new constructs, declarations, and concepts to be learned. Finally, we would like the implementation to be as straightforward as possible, ideally based on simple source to source expansions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract is not available

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dynamic scheduling increases the expressive power of logic programming languages, but also introduces some overhead. In this paper we present two classes of program transformations designed to reduce this additional overhead, while preserving the operational semantics of the original programs, modulo ordering of literals woken at the same time. The first class of transformations simplifies the delay conditions while the second class moves delayed literals later in the rule body. Application of the program transformations can be automated using information provided by compile-time analysis. We provide experimental results obtained from an implementation of the proposed techniques using the CIAO prototype compiler. Our results show that the techniques can lead to substantial performance improvement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Las pruebas de software (Testing) son en la actualidad la técnica más utilizada para la validación y la evaluación de la calidad de un programa. El testing está integrado en todas las metodologías prácticas de desarrollo de software y juega un papel crucial en el éxito de cualquier proyecto de software. Desde las unidades de código más pequeñas a los componentes más complejos, su integración en un sistema de software y su despliegue a producción, todas las piezas de un producto de software deben ser probadas a fondo antes de que el producto de software pueda ser liberado a un entorno de producción. La mayor limitación del testing de software es que continúa siendo un conjunto de tareas manuales, representando una buena parte del coste total de desarrollo. En este escenario, la automatización resulta fundamental para aliviar estos altos costes. La generación automática de casos de pruebas (TCG, del inglés test case generation) es el proceso de generar automáticamente casos de prueba que logren un alto recubrimiento del programa. Entre la gran variedad de enfoques hacia la TCG, esta tesis se centra en un enfoque estructural de caja blanca, y más concretamente en una de las técnicas más utilizadas actualmente, la ejecución simbólica. En ejecución simbólica, el programa bajo pruebas es ejecutado con expresiones simbólicas como argumentos de entrada en lugar de valores concretos. Esta tesis se basa en un marco general para la generación automática de casos de prueba dirigido a programas imperativos orientados a objetos (Java, por ejemplo) y basado en programación lógica con restricciones (CLP, del inglés constraint logic programming). En este marco general, el programa imperativo bajo pruebas es primeramente traducido a un programa CLP equivalente, y luego dicho programa CLP es ejecutado simbólicamente utilizando los mecanismos de evaluación estándar de CLP, extendidos con operaciones especiales para el tratamiento de estructuras de datos dinámicas. Mejorar la escalabilidad y la eficiencia de la ejecución simbólica constituye un reto muy importante. Es bien sabido que la ejecución simbólica resulta impracticable debido al gran número de caminos de ejecución que deben ser explorados y a tamaño de las restricciones que se deben manipular. Además, la generación de casos de prueba mediante ejecución simbólica tiende a producir un número innecesariamente grande de casos de prueba cuando es aplicada a programas de tamaño medio o grande. Las contribuciones de esta tesis pueden ser resumidas como sigue. (1) Se desarrolla un enfoque composicional basado en CLP para la generación de casos de prueba, el cual busca aliviar el problema de la explosión de caminos interprocedimiento analizando de forma separada cada componente (p.ej. método) del programa bajo pruebas, almacenando los resultados y reutilizándolos incrementalmente hasta obtener resultados para el programa completo. También se ha desarrollado un enfoque composicional basado en especialización de programas (evaluación parcial) para la herramienta de ejecución simbólica Symbolic PathFinder (SPF). (2) Se propone una metodología para usar información del consumo de recursos del programa bajo pruebas para guiar la ejecución simbólica hacia aquellas partes del programa que satisfacen una determinada política de recursos, evitando la exploración de aquellas partes del programa que violan dicha política. (3) Se propone una metodología genérica para guiar la ejecución simbólica hacia las partes más interesantes del programa, la cual utiliza abstracciones como generadores de trazas para guiar la ejecución de acuerdo a criterios de selección estructurales. (4) Se propone un nuevo resolutor de restricciones, el cual maneja eficientemente restricciones sobre el uso de la memoria dinámica global (heap) durante ejecución simbólica, el cual mejora considerablemente el rendimiento de la técnica estándar utilizada para este propósito, la \lazy initialization". (5) Todas las técnicas propuestas han sido implementadas en el sistema PET (el enfoque composicional ha sido también implementado en la herramienta SPF). Mediante evaluación experimental se ha confirmado que todas ellas mejoran considerablemente la escalabilidad y eficiencia de la ejecución simbólica y la generación de casos de prueba. ABSTRACT Testing is nowadays the most used technique to validate software and assess its quality. It is integrated into all practical software development methodologies and plays a crucial role towards the success of any software project. From the smallest units of code to the most complex components and their integration into a software system and later deployment; all pieces of a software product must be tested thoroughly before a software product can be released. The main limitation of software testing is that it remains a mostly manual task, representing a large fraction of the total development cost. In this scenario, test automation is paramount to alleviate such high costs. Test case generation (TCG) is the process of automatically generating test inputs that achieve high coverage of the system under test. Among a wide variety of approaches to TCG, this thesis focuses on structural (white-box) TCG, where one of the most successful enabling techniques is symbolic execution. In symbolic execution, the program under test is executed with its input arguments being symbolic expressions rather than concrete values. This thesis relies on a previously developed constraint-based TCG framework for imperative object-oriented programs (e.g., Java), in which the imperative program under test is first translated into an equivalent constraint logic program, and then such translated program is symbolically executed by relying on standard evaluation mechanisms of Constraint Logic Programming (CLP), extended with special treatment for dynamically allocated data structures. Improving the scalability and efficiency of symbolic execution constitutes a major challenge. It is well known that symbolic execution quickly becomes impractical due to the large number of paths that must be explored and the size of the constraints that must be handled. Moreover, symbolic execution-based TCG tends to produce an unnecessarily large number of test cases when applied to medium or large programs. The contributions of this dissertation can be summarized as follows. (1) A compositional approach to CLP-based TCG is developed which overcomes the inter-procedural path explosion by separately analyzing each component (method) in a program under test, stowing the results as method summaries and incrementally reusing them to obtain whole-program results. A similar compositional strategy that relies on program specialization is also developed for the state-of-the-art symbolic execution tool Symbolic PathFinder (SPF). (2) Resource-driven TCG is proposed as a methodology to use resource consumption information to drive symbolic execution towards those parts of the program under test that comply with a user-provided resource policy, avoiding the exploration of those parts of the program that violate such policy. (3) A generic methodology to guide symbolic execution towards the most interesting parts of a program is proposed, which uses abstractions as oracles to steer symbolic execution through those parts of the program under test that interest the programmer/tester most. (4) A new heap-constraint solver is proposed, which efficiently handles heap-related constraints and aliasing of references during symbolic execution and greatly outperforms the state-of-the-art standard technique known as lazy initialization. (5) All techniques above have been implemented in the PET system (and some of them in the SPF tool). Experimental evaluation has confirmed that they considerably help towards a more scalable and efficient symbolic execution and TCG.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel analysis for relating the sizes of terms and subterms occurring at diferent argument positions in logic predicates. We extend and enrich the concept of sized type as a representation that incorporates structural (shape) information and allows expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. For example, expressing bounds on the length of lists of numbers, together with bounds on the values of all of their elements. The analysis is developed using abstract interpretation and the novel abstract operations are based on setting up and solving recurrence relations between sized types. It has been integrated, together with novel resource usage and cardinality analyses, in the abstract interpretation framework in the Ciao preprocessor, CiaoPP, in order to assess both the accuracy of the new size analysis and its usefulness in the resource usage estimation application. We show that the proposed sized types are a substantial improvement over the previous size analyses present in CiaoPP, and also benefit the resource analysis considerably, allowing the inference of equal or better bounds than comparable state of the art systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel general resource analysis for logic programs based on sized types. Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for inferring both size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A refinement calculus provides a method for transforming specifications to executable code, maintaining the correctness of the code with respect to its specification. In this paper we introduce modules into a logic programming refinement calculus. Modules allow data types to be grouped together with sets of procedures that manipulate the data types. By placing restrictions on the way a program uses a module, we develop a technique for refining the module so that it uses a more efficient representation of the data type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Providing support for reversible transformations as a basis for round-trip engineering is a significant challenge in model transformation research. While there are a number of current approaches, they require the underlying transformation to exhibit an injective behaviour when reversing changes. This however, does not serve all practical transformations well. In this paper, we present a novel approach to round-trip engineering that does not place restrictions on the nature of the underlying transformation. Based on abductive logic programming, it allows us to compute a set of legitimate source changes that equate to a given change to the target model. Encouraging results are derived from an initial prototype that supports most concepts of the Tefkat transformation language

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the terminology of Logic programming, current search engines answer Sigma1 queries (formulas of the form where is a boolean combination of attributes). Such a query is determined by a particular sequence of keywords input by a user. In order to give more control to users, search engines will have to tackle more expressive queries, namely, Sigma2 queries (formulas of the form ). The purpose of the talk is to examine which directions could be explored in order to move towards more expressive languages, more powerful search engines, and the benefits that users should expect.