695 resultados para Locomotion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonicotinoids have been pointed to as a factor responsible for the increased honey bee colony losses in the last decades. Many studies have investigated the effects of the first marketed neonicotinoid, imidacloprid, while fewer have focused on thiamethoxam. One recent study showed that sublethal doses of thiamethoxam lead to colony failure by decreasing forager homing flight success. We thus decided to investigate the mechanism which caused this phenomenon. Our hypothesis was that this effect was caused by impairment of forager locomotion abilities. Therefore we tested the effects of sublethal acute and chronic exposures to thiamethoxam on forager walking (Chapter 2) and flight (Chapter 3) performances. The acute treatment (1.34 ng/bee) affected walking locomotion firstly triggering hyperactivity (30 min post-treatment) and then impairing motor functioning (60 min post-treatment). 2-day continuous exposures to thiamethoxam (32.5, 45 ppb) elicited fewer effects on walking locomotion, however both exposure modes elicited an increased positive phototaxis. Similarly, in flight experiments, the single dose (1.34 ng/bee) elicited hyperactivity shortly after intoxication (increased flight duration and distance), while longer and continuous exposures (32.5, 45 ppb) impaired forager motor functions (decreased flight duration, distance, velocity). It is known that flight muscles temperature needs to be precisely regulated by bees during flight. Therefore, we further hypothesized that the impaired flight performances of neonicotinoid intoxicated bees were caused also by thermoregulation anomalies. We tested the effects that acute thiamethoxam exposures (0.2, 1, 2 ng/bee) elicit on forager thorax temperature (Chapter 4). Foragers treated with high doses exhibited hyperthermia or hypothermia when respectively exposed to high or low environmental temperatures. In summary, we show that sublethal doses of thiamethoxam affected forager walking and flight locomotion, phototaxis and thermoregulation. We also display the intricate mode of action of thiamethoxam which triggered, at different extents, inverse sublethal effects in relation to time and dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (off-cell) spike activity, excitation of type I(e) (on-cell) spike activity, decreased spike activity in type III(i) inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type I(i) interneurons and pairs of type I(e) interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between I(e) and I(i) interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of I(e) and pairs of I(i) interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of I(e) and I(i) interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in I(e) and I(i) interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The effects of 4-aminopyridine (4-AP) on downbeat nystagmus (DBN) were analysed in terms of slow-phase velocity (SPV), stance, locomotion, visual acuity (VA), patient satisfaction and side effects using standardised questionnaires. Methods Twenty-seven patients with DBN received 5 mg 4-AP four times a day or placebo for 3 days and 10 mg 4-AP four times a day or placebo for 4 days. Recordings were done before the first, 60 min after the first and 60 min after the last drug administration. Results SPV decreased from 2.42 deg/s at baseline to 1.38 deg/s with 5 mg 4-AP and to 2.03 deg/s with 10 mg 4-AP (p<0.05; post hoc: 5 mg 4-AP: p=0.04). The rate of responders was 57%. Increasing age correlated with a 4-AP-related decrease in SPV (p<0.05). Patients improved in the ‘get-up-and-go test’ with 4-AP (p<0.001; post hoc: 5 mg: p=0.025; 10 mg: p<0.001). Tandem-walk time (both p<0.01) and tandem-walk error (4-AP: p=0.054; placebo: p=0.059) improved under 4-AP and placebo. Posturography showed that some patients improved with the 5 mg 4-AP dose, particularly older patients. Near VA increased from 0.59 at baseline to 0.66 with 5 mg 4-AP (p<0.05). Patients with idiopathic DBN had the greatest benefit from 4-AP. There were no differences between 4-AP and placebo regarding patient satisfaction and side effects. Conclusions 4-AP reduced SPV of DBN, improved near VA and some locomotor parameters. 4-AP is a useful medication for DBN syndrome, older patients in particular benefit from the effects of 5 mg 4-AP on nystagmus and postural stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migrating fibroblasts undergo contact inhibition of locomotion (CIL), a process that was discovered five decades ago and still is not fully understood at the molecular level. We identify the Slit2-Robo4-srGAP2 signaling network as a key regulator of CIL in fibroblasts. CIL involves highly dynamic contact protrusions with a specialized actin cytoskeleton that stochastically explore cell-cell overlaps between colliding fibroblasts. A membrane curvature-sensing F-BAR domain pre-localizes srGAP2 to protruding edges and terminates their extension phase in response to cell collision. A FRET-based biosensor reveals that Rac1 activity is focused in a band at the tip of contact protrusions, in contrast to the broad activation gradient in contact-free protrusions. SrGAP2 specifically controls the duration of Rac1 activity in contact protrusions, but not in contact-free protrusions. We propose that srGAP2 integrates cell edge curvature and Slit-Robo-mediated repulsive cues to fine-tune Rac1 activation dynamics in contact protrusions to spatiotemporally coordinate CIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain vesicular monoamine transporter (VMAT2) pumps monoamine neurotransmitters and Parkinsonism-inducing dopamine neurotoxins such as 1-methyl-4-phenyl-phenypyridinium (MPP+) from neuronal cytoplasm into synaptic vesicles, from which amphetamines cause their release. Amphetamines and MPP+ each also act at nonvesicular sites, providing current uncertainties about the contributions of vesicular actions to their in vivo effects. To assess vesicular contributions to amphetamine-induced locomotion, amphetamine-induced reward, and sequestration and resistance to dopaminergic neurotoxins, we have constructed transgenic VMAT2 knockout mice. Heterozygous VMAT2 knockouts are viable into adult life and display VMAT2 levels one-half that of wild-type values, accompanied by smaller changes in monoaminergic markers, heart rate, and blood pressure. Weight gain, fertility, habituation, passive avoidance, and locomotor activities are similar to wild-type littermates. In these heterozygotes, amphetamine produces enhanced locomotion but diminished behavioral reward, as measured by conditioned place preference. Administration of the MPP+ precursor N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to heterozygotes produces more than twice the dopamine cell losses found in wild-type mice. These mice provide novel information about the contributions of synaptic vesicular actions of monoaminergic drugs and neurotoxins and suggest that intact synaptic vesicle function may contribute more to amphetamine-conditioned reward than to amphetamine-induced locomotion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila shibire and its mammalian homologue dynamin regulate an early step in endocytosis. We identified a Caenorhabditis elegans dynamin gene, dyn-1, based upon hybridization to the Drosophila gene. The dyn-1 RNA transcripts are trans-spliced to the spliced leader 1 and undergo alternative splicing to code for either an 830- or 838-amino acid protein. These dyn-1 proteins are highly similar in amino acid sequence, structure, and size to the Drosophila and mammalian dynamins: they contain an N-terminal GTPase, a pleckstrin homology domain, and a C-terminal proline-rich domain. We isolated a recessive temperature-sensitive dyn-1 mutant containing an alteration within the GTPase domain that becomes uncoordinated when shifted to high temperature and that recovers when returned to lower temperatures, similar to D. shibire mutants. When maintained at higher temperatures, dyn-1 mutants become constipated, egg-laying defective, and produce progeny that die during embryogenesis. Using a dyn-1::lacZ gene fusion, a high level of dynamin expression was observed in motor neurons, intestine, and pharyngeal muscle. Our results suggest that dyn-1 function is required during development and for normal locomotion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formulas are derived for the effect of size on a free-swimming microbe’s ability to follow chemical, light, or temperature stimuli or to disperse in random directions. The four main assumptions are as follows: (i) the organisms can be modeled as spheres, (ii) the power available to the organism for swimming is proportional to its volume, (iii) the noise in measuring a signal limits determination of the direction of a stimulus, and (iv) the time available to determine stimulus direction or to swim a straight path is limited by rotational diffusion caused by Brownian motion. In all cases, it is found that there is a sharp size limit below which locomotion has no apparent benefit. This size limit is estimated to most probably be about 0.6 μm diameter and is relatively insensitive to assumed values of the other parameters. A review of existing descriptions of free-floating bacteria reveals that the smallest of 97 motile genera has a mean length of 0.8 μm, whereas 18 of 94 nonmotile genera are smaller. Similar calculations have led to the conclusion that a minimum size also exists for use of pheromones in mate location, although this size limit is about three orders of magnitude larger. In both cases, the application of well-established physical laws and biological generalities has demonstrated that a common feature of animal behavior is of no use to small free-swimming organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divalent cations are thought essential for motile function of leukocytes in general, and for the function of critical adhesion molecules in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the effects of 10 mM EDTA on locomotion of human blood polymorphonuclear leukocytes (PMN). In very thin slide preparations, EDTA did not impair either random locomotion or chemotaxis; motile behavior appeared to benefit from the close approximation of slide and coverslip (“chimneying”). In preparations twice as thick, PMN in EDTA first exhibited active deformability with little or no displacement, then rounded up and became motionless. However, on creation of a chemotactic gradient, the same cells were able to orient and make their way to the target, often, however, losing momentarily their purchase on the substrate. In either of these preparations without EDTA, specific antibodies to β2 integrins did not prevent random locomotion or chemotaxis, even when we added antibodies to β1 and αvβ3 integrins and to integrin-associated protein, and none of these antibodies added anything to the effects of EDTA. In the more turbulent environment of even more media, effects of anti-β2 integrins became evident: PMN still could locomote but adhered to substrate largely by their uropods and by uropod-associated filaments. We relate these findings to the reported independence from integrins of PMN in certain experimental and disease states. Moreover, we suggest that PMN locomotion in close quarters is not only integrin-independent, but independent of external divalent cations as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diverse roles in cellular functions have been ascribed to nitric oxide (NO), and its involvement in induction of long-term depression in cerebellar Purkinje cells has been demonstrated. Manipulations of NO concentration or its synthesis in cerebellar tissues therefore provide a means for investigating roles of NO in cerebellar functions at both cellular and behavioral levels. We tested adaptive control of locomotion to perturbation in cats, and found that this form of motor learning was abolished by application of either an inhibitor of NO synthase or a scavenger of NO to the cerebellar cortical locomotion area. This finding supports the view that NO in the cerebellum plays a key role in motor learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 μM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.