988 resultados para Local fractional Fourier operator
Resumo:
The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
This paper deals with a system involving a flexible rod subjected to magnetic forces that can bend it while simultaneously subjected to external excitations produces complex and nonlinear dynamic behavior, which may present different types of solutions for its different movement-related responses. This fact motivated us to analyze such a mechanical system based on modeling and numerical simulation involving both, integer order calculus (IOC) and fractional order calculus (FOC) approaches. The time responses, pseudo phase portraits and Fourier spectra have been presented. The results obtained can be used as a source for conduct experiments in order to obtain more realistic and more accurate results about fractional-order models when compared to the integer-order models. © Published under licence by IOP Publishing Ltd.
Resumo:
O método de empilhamento sísmico por Superfície de Reflexão Comum (ou empilhamento SRC) produz a simulação de seções com afastamento nulo (NA) a partir dos dados de cobertura múltipla. Para meios 2D, o operador de empilhamento SRC depende de três parâmetros que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0), o raio de curvatura da onda ponto de incidência normal (RNIP) e o raio de curvatura da onda normal (RN). O problema crucial para a implementação do método de empilhamento SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros ótimos associados a cada ponto de amostragem da seção AN a ser simulada. No presente trabalho foi desenvolvido uma nova sequência de processamento para a simulação de seções AN por meio do método de empilhamento SRC. Neste novo algoritmo, a determinação dos três parâmetros ótimos que definem o operador de empilhamento SRC é realizada em três etapas: na primeira etapa são estimados dois parâmetros (β°0 e R°NIP) por meio de uma busca global bidimensional nos dados de cobertura múltipla. Na segunda etapa é usado o valor de β°0 estimado para determinar-se o terceiro parâmetro (R°N) através de uma busca global unidimensional na seção AN resultante da primeira etapa. Em ambas etapas as buscas globais são realizadas aplicando o método de otimização Simulated Annealing (SA). Na terceira etapa são determinados os três parâmetros finais (β0, RNIP e RN) através uma busca local tridimensional aplicando o método de otimização Variable Metric (VM) nos dados de cobertura múltipla. Nesta última etapa é usado o trio de parâmetros (β°0, R°NIP, R°N) estimado nas duas etapas anteriores como aproximação inicial. Com o propósito de simular corretamente os eventos com mergulhos conflitantes, este novo algoritmo prevê a determinação de dois trios de parâmetros associados a pontos de amostragem da seção AN onde há intersecção de eventos. Em outras palavras, nos pontos da seção AN onde dois eventos sísmicos se cruzam são determinados dois trios de parâmetros SRC, os quais serão usados conjuntamente na simulação dos eventos com mergulhos conflitantes. Para avaliar a precisão e eficiência do novo algoritmo, este foi aplicado em dados sintéticos de dois modelos: um com interfaces contínuas e outro com uma interface descontinua. As seções AN simuladas têm elevada razão sinal-ruído e mostram uma clara definição dos eventos refletidos e difratados. A comparação das seções AN simuladas com as suas similares obtidas por modelamento direto mostra uma correta simulação de reflexões e difrações. Além disso, a comparação dos valores dos três parâmetros otimizados com os seus correspondentes valores exatos calculados por modelamento direto revela também um alto grau de precisão. Usando a aproximação hiperbólica dos tempos de trânsito, porém sob a condição de RNIP = RN, foi desenvolvido um novo algoritmo para a simulação de seções AN contendo predominantemente campos de ondas difratados. De forma similar ao algoritmo de empilhamento SRC, este algoritmo denominado empilhamento por Superfícies de Difração Comum (SDC) também usa os métodos de otimização SA e VM para determinar a dupla de parâmetros ótimos (β0, RNIP) que definem o melhor operador de empilhamento SDC. Na primeira etapa utiliza-se o método de otimização SA para determinar os parâmetros iniciais β°0 e R°NIP usando o operador de empilhamento com grande abertura. Na segunda etapa, usando os valores estimados de β°0 e R°NIP, são melhorados as estimativas do parâmetro RNIP por meio da aplicação do algoritmo VM na seção AN resultante da primeira etapa. Na terceira etapa são determinados os melhores valores de β°0 e R°NIP por meio da aplicação do algoritmo VM nos dados de cobertura múltipla. Vale salientar que a aparente repetição de processos tem como efeito a atenuação progressiva dos eventos refletidos. A aplicação do algoritmo de empilhamento SDC em dados sintéticos contendo campos de ondas refletidos e difratados, produz como resultado principal uma seção AN simulada contendo eventos difratados claramente definidos. Como uma aplicação direta deste resultado na interpretação de dados sísmicos, a migração pós-empilhamento em profundidade da seção AN simulada produz uma seção com a localização correta dos pontos difratores associados às descontinuidades do modelo.
Resumo:
In this thesis, a systematic analysis of the bar B to X_sgamma photon spectrum in the endpoint region is presented. The endpoint region refers to a kinematic configuration of the final state, in which the photon has a large energy m_b-2E_gamma = O(Lambda_QCD), while the jet has a large energy but small invariant mass. Using methods of soft-collinear effective theory and heavy-quark effective theory, it is shown that the spectrum can be factorized into hard, jet, and soft functions, each encoding the dynamics at a certain scale. The relevant scales in the endpoint region are the heavy-quark mass m_b, the hadronic energy scale Lambda_QCD and an intermediate scale sqrt{Lambda_QCD m_b} associated with the invariant mass of the jet. It is found that the factorization formula contains two different types of contributions, distinguishable by the space-time structure of the underlying diagrams. On the one hand, there are the direct photon contributions which correspond to diagrams with the photon emitted directly from the weak vertex. The resolved photon contributions on the other hand arise at O(1/m_b) whenever the photon couples to light partons. In this work, these contributions will be explicitly defined in terms of convolutions of jet functions with subleading shape functions. While the direct photon contributions can be expressed in terms of a local operator product expansion, when the photon spectrum is integrated over a range larger than the endpoint region, the resolved photon contributions always remain non-local. Thus, they are responsible for a non-perturbative uncertainty on the partonic predictions. In this thesis, the effect of these uncertainties is estimated in two different phenomenological contexts. First, the hadronic uncertainties in the bar B to X_sgamma branching fraction, defined with a cut E_gamma > 1.6 GeV are discussed. It is found, that the resolved photon contributions give rise to an irreducible theory uncertainty of approximately 5 %. As a second application of the formalism, the influence of the long-distance effects on the direct CP asymmetry will be considered. It will be shown that these effects are dominant in the Standard Model and that a range of -0.6 < A_CP^SM < 2.8 % is possible for the asymmetry, if resolved photon contributions are taken into account.
Resumo:
Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity
Resumo:
BACKGROUND There is great variability for the type of anaesthesia used during TAVI, with no clear consensus coming from comparative studies or guidelines. We sought to detect regional differences in the anaesthetic management of patients undergoing transcatheter aortic valve implantation (TAVI) in Europe and to evaluate the relationship between type of anaesthesia and in-hospital and 1year outcome. METHODS Between January 2011 and May 2012 the Sentinel European TAVI Pilot Registry enrolled 2807 patients treated via a transfemoral approach using either local (LA-group, 1095 patients, 39%) or general anaesthesia (GA-group, 1712 patients, 61%). RESULTS A wide variation in LA use was evident amongst the 10 participating countries. The use of LA has increased over time (from a mean of 37.5% of procedures in the first year, to 57% in last 6months, p<0.01). MI, major stroke as well as in-hospital death rate (7.0% LA vs 5.3% GA, p=0.053) had a similar incidence between groups, confirmed in multivariate regression analysis after adjusting for confounders. Dividing our population in tertiles according to the Log-EuroSCORE we found similar mortality under LA, whilst mortality was higher in the highest risk tertile under GA. Survival at 1year, compared by Kaplan-Meier analysis, was similar between groups (log-rank: p=0.1505). CONCLUSIONS Selection of anaesthesia appears to be more influenced by national practice and operator preference than patient characteristics. In the absence of an observed difference in outcomes for either approach, there is no compelling argument to suggest that operators and centres should change their anaesthetic practice.
Resumo:
The electronic structure of atomically precise armchair graphene nanoribbons of width N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). We record the standing waves in the local density of states of finite ribbons as a function of sample bias and extract the dispersion relation of frontier electronic states by Fourier transformation. The wave-vector-dependent contributions from these states agree with density functional theory calculations, thus enabling the unambiguous assignment of the states to the valence band, the conduction band, and the next empty band with effective masses of 0.41±0.08me,0.40±0.18me, and 0.20±0.03me, respectively. By comparing the extracted dispersion relation for the conduction band to corresponding height-dependent tunneling spectra, we find that the conduction band edge can be resolved only at small tip-sample separations and has not been observed before. As a result, we report a band gap of 2.37±0.06 eV for 7-AGNRs adsorbed on Au(111).
Resumo:
We have searched for a minimal interaction motif in τ protein that supports the aggregation into Alzheimer-like paired helical filaments. Digestion of the repeat domain with different proteases yields a GluC-induced fragment comprising 43 residues (termed PHF43), which represents the third repeat of τ plus some flanking residues. This fragment self assembles readily into thin filaments without a paired helical appearance, but these filaments are highly competent to nucleate bona fide PHFs from full-length τ. Probing the interactions of PHF43 with overlapping peptides derived from the full τ sequence yields a minimal hexapeptide interaction motif of 306VQIVYK311 at the beginning of the third internal repeat. This motif coincides with the highest predicted β-structure potential in τ. CD and Fourier transform infrared spectroscopy shows that PHF43 acquires pronounced β structure in conditions of self assembly. Point mutations in the hexapeptide region by proline-scanning mutagenesis prevent the aggregation. The data indicate that PHF assembly is initiated by a short fragment containing the minimal interaction motif forming a local β structure embedded in a largely random-coil protein.
Resumo:
We examine how the polypeptide chain in protein crystal structures exploits the multivalent hydrogen-bonding potential of bound water molecules. This shows that multiple interactions with a single water molecule tend to occur locally along the chain. A distinctive internal-coordinate representation of the local water-binding segments reveals several consensus conformations. The fractional water occupancy of each was found by comparison of the total number of conformations in the database regardless of the presence or absence of bound water. The water molecule appears particularly frequently in type II beta-turn geometries and an N-terminal helix feature. This work constitutes a first step into assessing not only the generality but also the significance of specific water binding in globular proteins.
Resumo:
When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner [Phys. Rev. A 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.
Resumo:
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Resumo:
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.
Resumo:
Mathematics Subject Classification: 47B38, 31B10, 42B20, 42B15.