993 resultados para Lipocalin prostaglandin D synthase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol stimulates the production of prostaglandins in many species. The purpose of this study was to verify the effect of ethanol on the production of prostaglandin F2 alpha (PGF2 alpha) and luteolysis in bovine females. In the first experiment, Holstein cows at day 17 of the oestrous cycle were treated with 100% ethanol (0.05 ml/kg of body weight, IV; n = 5), saline (0.05 ml/kg of body weight, IV; n = 4) or synthetic prostaglandin (150 mu g of D-cloprostenol/cow, IM; n = 4). The plasma concentrations of 13, 14-dihydro-15-keto PGF2 alpha (PGFM; the main metabolite of PGF2 alpha measured in the peripheral blood) were assessed by radioimmunoassay (RIA). There was an acute release of PGFM in response to ethanol comparing to other treatments (p <= 0.05). However, only cows treated with PGF2 alpha underwent luteolysis. In the second experiment, endometrial explants of cross-bred beef cows (n = 4) slaughtered at day 17 of the oestrous cycle were cultured for 4 h. During the last 3 h, the explants were cultured with medium supplemented with 0, 0.1, I, 10 or 100 mu l of 100% ethanol/ml. Medium samples were collected at hours 1 and 4 and concentrations of PGF2 alpha were measured by RIA. Ethanol did not induce PGF2 alpha production by the endometrium. In conclusion, ethanol does not cause luteolysis in cows because it stimulates production of PGF2 alpha in extra-endometrial tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PRL and placental lactogen (PL) play key roles in maintaining the rodent corpus luteum through pregnancy. Suppressors of cytokine signaling (SOCS) have been shown to decrease cell sensitivity to cytokines, including PRL, and so here we have addressed the issue of whether luteolysis induced by prostaglandin F-2alpha (PGF(2alpha)) might up-regulate SOCS proteins to inhibit PRL signaling. In d 19 pregnant rats, cloprostenol, a PGF(2alpha) analog, rapidly induced transcripts for SOCS-3 and, to a lesser extent, SOCS-1. We also found increased SOCS-3 protein in the ovary by immunoblot and in the corpus luteum by immunohistochemistry. Increased SOCS-3 expression was preceded by an increase in STAT3 tyrosine phosphorylation 10 min after cloprostenol injection and was maintained for 4 h, as determined by gel shift and immunohistochemistry. Induction of SOCS-3 was accompanied by a sharp decrease in active STAT5, as determined by gel-shift assay and by loss of nuclear localized STAT5. Four hours after cloprostenol administration, the corpus luteum was refractory to stimulation of STAT5 by PRL administration, and this was not due to down-regulation of PRL receptor. Therefore, induction of SOCS-3 by PGF(2alpha) may be an important element in the initiation of luteolysis via rapid suppression of luteotropic support from PL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: This study was designed to investigate the influence of angiotensin II (Ang II) and nitric oxide (NO) on autoregulation of renal perfusion. Methods: Autoregulation was investigated in isolated perfused kidneys (IPRK) from Sprague-Dawley rats during stepped increases in perfusion pressure. Results: Ang II (75-200 pM) produced dose-dependent enhancement of autoregulation whereas phenylephrine produced no enhancement and impaired autoregulation of GFR. Enhancement by Ang II was inhibited by the AT(1) antagonist, Losartan, and the superoxide scavenger, Tempol. Under control conditions nitric oxide synthase (NOS) inhibition by 10 muM N-omega-nitro-L-arginine methyl ester (L-NAME) facilitated autoregulation in the presence of non-specific cyclooxygenase (COX) inhibition by 10 muM indomethacin. Both COX and combined NOS/COX inhibition reduced the autoregulatory threshold concentration of Ang II. Facilitation by 100 pM Ang II was inhibited by 100 muM frusemide. Methacholine (50 nM) antagonised Ang II-facilitated autoregulation in the presence and absence of NOS/COX inhibition. Infusion of the NO donor, 1 muM sodium nitroprusside, inhibited L-NAME enhancement of autoregulation under control conditions and during Ang II infusion. Conclusions: The results suggest than an excess of NO impairs autoregulation under control conditions in the IPRK and that endogenous and exogenous NO, vasodilatory prostaglandins and endothelium-derived hyperpolarizing factor (EDHF) activity antagonise Ang II-facilitated autoregulation. Ang II also produced a counterregulatory vasodilatory response that included prostaglandin and NO release. We suggest that Ang II facilitates autoregulation by a tubuloglomerular feedback-dependent mechanism through AT(1) receptor-mediated depletion of nitric oxide, probably by stimulating generation of superoxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUME : L'athérosclérose, pathologie inflammatoire artérielle chronique, est à l'origine de la plupart des maladies cardiovasculaires qui constituent l'une des premières causes de morbidité et mortalité en France. Les études observationnelles et expérimentales montrent que l'exercice physique prévient la mortalité cardiovasculaire. Cependant, les mécanismes précisant les bénéfices cliniques de l'exercice sur l'athérosclérose sont encore largement inconnus. Le but général de ce travail a donc été d'explorer, en utilisant un modèle expérimental d'athérosclérose, la souris hypercholestérolémique génétiquement dépourvue en apolipoprotéine E (apoE-/-), les mécanismes athéroprotecteurs de l'exercice. La dysfonction endothéliale, généralement associée aux facteurs de risque cardiovasculaire, serait l'une des étapes précoces majeures de l'athérogenèse. Elle est caractérisée par une diminution de la biodisponibilité en monoxyde d'azote (NO) avec la perte de ses propriétés vasculo-protectrices, ce qui favorise un climat pro-athérogène (stress oxydatif, adhésion et infiltration des cellules inflammatoires dans la paroi artérielle...) conduisant à la formation de la plaque athéromateuse. L'objectif de notre premier travail a donc été d'explorer les effets de l'exercice d'une part, sur le développement des plaques athéromateuses et d'autre part, sur la fonction endothéliale de la souris apoE-/-. Nos résultats montrent que l'exercice réduit significativement l'extension de l'athérosclérose et prévient la dysfonction endothéliale. L'explication pharmacologique montre que l'exercice stimule la fonction endothéliale via, notamment, une plus grande sensibilité des récepteurs endothéliaux muscariniques, ce qui active les événements signalétiques cellulaires récepteurs-dépendants à l'origine d'une bioactivité accrue de NO. Les complications cliniques graves de l'athérosclérose sont induites par la rupture de la plaque instable provoquant la formation d'un thrombus occlusif et l'ischémie du territoire tissulaire en aval. L'objectif de notre deuxième travail a été d'examiner l'effet de l'exercice sur la qualité/stabilité de la plaque. Nos résultats indiquent que l'exercice de longue durée stabilise la plaque en augmentant le nombre de cellules musculaires lisses et en diminuant le nombre de macrophages intra-plaques. Nos résultats montrent aussi que la phosphorylation de la eNOS (NO Synthase endothéliale) Akt-dépendante n'est pas le mécanisme moléculaire majeur à l'origine de ce bénéfice. Enfin, dans notre troisième travail, nous avons investigué l'effet de l'exercice sur le développement de la plaque vulnérable. Nos résultats montrent, chez un modèle murin de plaque instable (modèle d'hypertension rénovasculaire à rénine et angiotensine II élevés) que l'exercice prévient l'apparition de la plaque vulnérable indépendamment d'un effet hémodynamique. Ce bénéfice serait associé à une diminution de l'expression vasculaire des récepteurs AT1 de l'Angiotensine II. Nos résultats justifient l'importance de l'exercice comme outil préventif des maladies cardiovasculaires. ABSTRACT : Atherosclerosis, a chronic inflammatory disease, is one of the main causes of morbidity and mortality in France. Observational and experimental data indicate that regular physical exercise has a positive impact on cardiovascular mortality. However, the mechanisms by which exercise exerts clinical benefits on atherosclerosis are still unknown. The general aim of this work was to elucidate the anti-atherosclerotic effects of exercise, using a mouse model of atherosclerosis: the apolipoprotein E-deficient mice (apoE-/- mice). Endothelial dysfunction, generally associated with cardiovascular risk factors, has been recognized to be a major and early step in atherogenesis. Endothelial dysfunction is characterized by Nitric Oxide (NO) biodisponibility reduction with loss of NO-mediated vasculoprotective actions. This leads to vascular effects such as increased oxidative stress and increased adhesion of inflammatory cells into arterial wall thus playing a role in atherosclerotic plaque development. Therefore, one of the objective of our study was to explore the effects of exercise on atherosclerotic plaque extension and on endothelial function in apoE-/- mice. Results show that exercise significantly reduces plaque progression and prevents endothelial dysfunction. Pharmacological explanation indicates that exercise stimulates endothelial function by increasing muscarinic receptors sensitivity which in turn activates intracellular signalling receptor-dependent events leading to increased NO bioactivity. The clinical manifestations of atherosclerosis are the consequences of unstable plaque rupture with thrombus formation leading to tissue ischemia. The second aim of our work was to determine the effect of exercise on plaque stability. We demonstrate that long-term exercise stabilizes atherosclerotic plaques as shown by decreased macrophage and increased Smooth Muscle Cells plaque content. Our results also suggest that the Akt-dependent eNOS phosphorylation pathway is not the primary molecular mechanism mediating these beneficial effects. Finally, we assessed a putative beneficial effect of exercise on vulnerable plaque development. In a mouse model of Angiotensine II (Ang II)-mediated vulnerable atherosclerotic plaques, we provide fist evidence that exercise prevents atherosclerosis progression and plaque vulnerability. The beneficial effect of swimming was associated with decreased aortic Ang II AT1 receptor expression independently from any hemodynamic change. These findings suggest clinical benefit of exercise in terms of cardiovascular event protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2) ) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2) , but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity. Hum Mutat 33:1175-1181, 2012. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the late 1970s pyrimethamine-sulfadoxine (PS; FansidarTM Hoffman-LaRoche, Basel) has been used as first line therapy for uncomplicated malaria in the Amazon basin. Unfortunately, resistance has developed over the last ten years in many regions of the Amazon and PS is no longer recommended for use in Brazil. In vitro resistance to pyrimethamine and cycloguanil (the active metabolite of proguanil) is caused by specific point mutations in Plasmodium falciparum dihydrofolate reductase (DHFR), and in vitro resistance to sulfadoxine has been associated with mutations in dihydropteroate synthase (DHPS). In association with a proguanil-sulfamethoxazole clinical trial in Brazil, we performed a nested mutation-specific polymerase chain reaction to measure the prevalence of DHFR mutations at codons 50, 51, 59, 108 and 164 and DHPS mutations at codons 436, 437, 540, 581 and 613 at three sites in the Brazilian Amazon. Samples from two isolated towns showed a high degree of homogeneity, with the DHFR Arg-50/Ile-51/Asn-108 and DHPS Gly-437/Glu-540/Gly-581 mutant genotype accounting for all infections in Peixoto de Azevedo (n = 15) and 60% of infections in Apiacás (n = 10), State of Mato Grosso. The remaining infections in Apiacás differed from this predominant genotype only by the addition of the Bolivia repeat at codon 30 and the Leu-164 mutation in DHFR. By contrast, 17 samples from Porto Velho, capital city of the State of Rondônia, with much in- and out-migration, showed a wide variety of DHFR and DHPS genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa the extracellular metabolite and siderophore pyochelin is synthesized from two major precursors, chorismate and l-cysteine via salicylate as an intermediate. The regulatory role of isochorismate synthase, the first enzyme in the pyochelin biosynthetic pathway, was studied. This enzyme is encoded by pchA, the last gene in the pchDCBA operon. The PchA protein was purified to apparent electrophoretic homogeneity from a PchA-overexpressing P. aeruginosa strain. The native enzyme was a 52-kDa monomer in solution, and its activity strictly depended on Mg(2+). At pH 7.0, the optimum, a K(m) = 4.5 microm and a k(cat) = 43.1 min(-1) were determined for chorismate. No feedback inhibitors or other allosteric effectors were found. The intracellular PchA concentration critically determined the rate of salicylate formation both in vitro and in vivo. In cultures grown in iron-limiting media to high cell densities, overexpression of the pchA gene resulted in overproduction of salicylate as well as in enhanced pyochelin formation. From this work and earlier studies, it is proposed that one important factor influencing the flux through the pyochelin biosynthetic pathway is the PchA concentration, which is determined at a transcriptional level, with pyochelin acting as a positive signal and iron as a negative signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the present study was to examine the viscoelastic properties of the carotid artery in genetically identical rats exposed to similar levels of blood pressure sustained by different mechanisms. Eight-week old male Wistar rats were examined 2 weeks after renal artery clipping (two-kidney, one clip [2K1C] Goldblatt rats, n = 53) or sham operation (n = 49). One half of the 2K1C and sham rats received the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 1.48 mmol/L) in their drinking water for 2 weeks after the surgical procedure. Mean blood pressure increased significantly in the 2K1C-water (182 mm Hg), 2K1C-L-NAME (197 mm Hg), and sham-L-NAME (170 mm Hg) rats compared with the sham-water rats (127 mm Hg). Plasma renin activity was not altered by L-NAME but significantly enhanced after renal artery clipping. A significant and similar increase in the cross-sectional area of the carotid artery was observed in L-NAME and vehicle-treated 2K1C rats. L-NAME per se did not modify cross-sectional area in the sham rats. There was a significant upward shift of the distensibility-pressure curve in the L-NAME- and vehicle-treated 2K1C rats compared with the sham-L-NAME rats. L-NAME treatment did not alter the distensibility-pressure curve in the 2K1C rats. These results demonstrate that the mechanisms responsible for artery wall hypertrophy in renovascular hypertension are accompanied by an increase in arterial distensibility that is not dependent on the synthesis of nitric oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the hemodynamic effects of L-canavanine (an inhibitor of inducible, but not of constitutive, nitric oxide synthase) in endotoxic shock. DESIGN: Controlled, randomized, experimental study. SETTING: Animal laboratory. SUBJECTS: Wistar rats. INTERVENTIONS: Rats were anesthetized with pentobarbital, and hemodynamically monitored. One hour after an intravenous challenge with 5 mg/kg of Escherichia coli endotoxin, the rats were randomized to receive a continuous infusion of either L-canavanine (20 mg/kg/hr; n = 8) or vehicle only (isotonic saline, n = 11). In all animals, the infusion was given over 5 hrs at a rate of 2 mL/kg/hr. These experiments were repeated in additional rats challenged with isotonic saline instead of endotoxin (sham experiments). MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, heart rate, thermodilution cardiac output, central venous pressure, mean systemic filling pressure, urine output, arterial blood gases, blood lactate concentration, and hematocrit were measured. In sham experiments, hemodynamic stability was maintained throughout and L-canavanine had no detectable effect. Animals challenged with endotoxin and not treated with L-canavanine developed progressive hypotension and low cardiac output. After 6 hrs of endotoxemia, both central venous pressure and mean systemic filling pressure were significantly below their baseline values, indicating relative hypovolemia as the main determinant of reduced cardiac output. In endotoxemic animals treated with L-canavanine, hypotension was less marked, while cardiac output, central venous pressure, and mean systemic filling pressure were maintained throughout the experiment. L-canavanine had no effect on the time-course of hematocrit. L-canavanine significantly increased urine output and reduced the severity of lactic acidosis. CONCLUSIONS: Six hours after an endotoxin challenge in rats, low cardiac output develops, which appears to be primarily related to relative hypovolemia. L-canavanine, a selective inhibitor of the inducible nitric oxide synthase, increases the mean systemic filling pressure, thereby improving venous return, under these conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.