944 resultados para Lipid and glucose levels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Early impairment of cerebral blood flow in patients with severe head injury correlates with poor brain tissue O2 delivery and may be an important cause of ischemic brain damage. The purpose of this study was to measure cerebral tissue PO2, lactate, and glucose in patients after severe head injury to determine the effect of increased tissue O2 achieved by increasing the fraction of inspired oxygen (FiO2). METHODS: In addition to standard monitoring of intracranial pressure and cerebral perfusion pressure, the authors continuously measured brain tissue PO2, PCO2, pH, and temperature in 22 patients with severe head injury. Microdialysis was performed to analyze lactate and glucose levels. In one cohort of 12 patients, the PaO2 was increased to 441+/-88 mm Hg over a period of 6 hours by raising the FiO2 from 35+/-5% to 100% in two stages. The results were analyzed and compared with the findings in a control cohort of 12 patients who received standard respiratory therapy (mean PaO2 136.4+/-22.1 mm Hg). The mean brain PO2 levels increased in the O2-treated patients up to 359+/-39% of the baseline level during the 6-hour FiO2 enhancement period, whereas the mean dialysate lactate levels decreased by 40% (p < 0.05). During this O2 enhancement period, glucose levels in brain tissue demonstrated a heterogeneous course. None of the monitored parameters in the control cohort showed significant variations during the entire observation period. CONCLUSIONS: Markedly elevated lactate levels in brain tissue are common after severe head injury. Increasing PaO2 to higher levels than necessary to saturate hemoglobin, as performed in the O2-treated cohort, appears to improve the O2 supply in brain tissue. During the early period after severe head injury, increased lactate levels in brain tissue were reduced by increasing FiO2. This may imply a shift to aerobic metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P < 0.01). Induced hyperinsulinemia caused a decline of plasma glucose AUC/h to 2.3 ± 0.1 mmol/L in HypoG (P < 0.01), whereas plasma glucose AUC/h remained unchanged in EuG (3.8 ± 0.2 mmol/L) and NaCl (4.1 ± 0.1 mmol/L). Plasma glucagon AUC/h was lower in EuG (84.0 ± 6.3 pg/mL; P < 0.05) and elevated in HypoG (129.0 ± 7.0 pg/mL; P < 0.01) as compared with NaCl (106.1 ± 5.4 pg/mL). The results show that intravenous insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is high, glucagon is upregulated to increase glucose availability. Therefore, insulin and glucose are conjoint regulatory factors of glucagon concentrations in dairy cows, and the plasma glucose status is the key factor to decide if its concentrations are increased or decreased. This regulatory effect can be important for the maintenance of glucose homeostasis if insulin secretion is upregulated by other factors than high glucose such as high plasma lipid and protein concentrations at simultaneously low glucose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium/hydrogen exchangers (NHEs) are ubiquitous ion transporters that serve multiple cell functions. We have studied two mammalian isoforms, NHE1 (ubiquitous) and NHE3 (epithelial-specific), by measuring extracellular proton (H+) gradients during whole-cell patch clamp with perfusion of the cell interior. Maximal Na(+)-dependent H+ fluxes (JH+) are equivalent to currents >20 pA for NHE1 in Chinese hamster ovary fibroblasts, >200 pA for NHE1 in guinea pig ventricular myocytes, and 5-10 pA for NHE3 in opossum kidney cells. The fluxes are blocked by an NHE inhibitor, ethylisopropylamiloride, and are absent in NHE-deficient AP-1 cells. NHE1 activity is stable with perfusion of nonhydrolyzable ATP [adenosine 5'-(beta,gamma-imido)triphosphate], is abolished by ATP depletion (2 deoxy-D-glucose with oligomycin or perfusion of apyrase), can be restored with phosphatidylinositol 4,5-bisphosphate, and is unaffected by actin cytoskeleton disruption (latrunculin or pipette perfusion of gelsolin). NHE3 (but not NHE1) is reversibly activated by phosphatidylinositol 3,4,5-trisphosphate. Both NHE1 and NHE3 activities are disrupted in giant patches during gigaohm seal formation. NHE1 (but not NHE3) is reversibly activated by cell shrinkage, even at neutral cytoplasmic pH without ATP, and inhibited by cell swelling. NHE1 in Chinese hamster ovary fibroblasts (but not NHE3 in opossum kidney cells) is inhibited by agents that thin the membrane (L-alpha-lysophosphatidylcholine and octyl-beta-D-glucopyranoside) and activated by cholesterol enrichment, which thickens membranes. Expressed in AP-1 cells, however, NHE1 is insensitive to these agents but remains sensitive to volume changes. Thus, changes of hydrophobic mismatch can modulate NHE1 but do not underlie its volume sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female common eiders (Somateria mollissima) starve during the nesting stage and may lose 30-45% of their initial body mass, mostly through lipid mobilization. In this study, the effects of fasting on the blood concentrations of three lipid-soluble organochlorines (OCs: polychlorinated biphenyl [PCB]-153; 1-dichloro-2,2-bis (p-chlorophenyl) ethylene [p,p'-DDE]; and hexachlorobenzene [HCB]) were examined in eiders breeding in the high Arctic. Blood samples were taken from females (n = 47) at day 5 and day 20 of the incubation period. The mean wet weight concentrations of PCB-153 and p,p'-DDE increased strongly between day 5 and day 20 (3.6 and 8.2-fold, respectively), while HCB increased less (1.7-fold). There was a strong negative association between daily increase in PCB-153 and clutch size, and a weaker relationship for p,p'-DDE, suggesting that maternal transfer to the eggs is a significant pathway of elimination of OCs in eiders. Moreover, poor body condition (body mass controlled for body size) late in the incubation period was associated with strong daily increase of both p,p'-DDE and PCB-153, which may suggest that the release of these compounds increases when lipid reserves become depleted. For HCB, the increase was mainly associated with increase in blood lipid concentrations, and weakly to the amount of burned lipids. The causes for the differences between the compounds are, however, poorly understood. Although the absolute levels of OCs in eiders were relatively low, their rapid build-up during incubation is worrying as it coincides with poor body condition and weakened immune systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we examined three aspects pertaining to adrenocortical responsiveness in free-ranging Australian freshwater crocodiles (Crocodylus johnstoni). First, we examined the ability of freshwater crocodiles to produce corticosterone in response to a typical capture-stress protocol. A second objective addressed the relationship between capture stress, plasma glucose and corticosterone. Next we examined if variation in basal and capture-stress-induced levels of plasma corticosterone was linked to ecological or demographic factors for individuals in this free-ranging population. Blood samples obtained on three field trips were taken from a cross-sectional sample of the population. Crocodiles were bled once during four time categories at 0, 0. 5, 6, and 10 h post-capture. Plasma corticosterone increased significantly with time post-capture. Plasma glucose also significantly increased with duration of capture-stress and exhibited a positive and significant relationship with plasma corticosterone. Significant variation in basal or stress induced levels of corticosterone in crocodiles was not associated with any ecological or demographic factors including sex, age class or the year of capture that the crocodiles were sampled from. However, three immature males had basal levels of plasma corticosterone greater than 2 standard deviations above the mean. While crocodiles exhibited a pronounced, adrenocortical and hyperglycaemic response to capture stress, limited variation in adrenocortical responsiveness due to ecological and demographic factors was not evident. This feature could arise in part because this population was sampled during a period of environmental benigness. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout ( Nas1(-/-)) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1(-/-) mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased ( n = 51) or decreased ( n = 41) in Nas1(-/-) mice when compared with Nas1(-/-) mice. The most upregulated transcript levels in Nas1(-/-) mice were found for the sulfotransferase genes, Sult3a1 ( approximate to 500% increase) and Sult2a2 ( 100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes ( 70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated ( >= 30% increase) in Nas1(+/+) mice. In addition, Nas1(+/+) mice exhibited increased levels of hepatic lipid ( approximate to 16% increase), serum cholesterol ( approximate to 20% increase), and low-density lipoprotein ( approximate to 100% increase) and reduced hepatic glycogen ( approximate to 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1(-/-) mouse and provide new insights into the metabolic state of the liver in Nas1(-/-) mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate OneTouch® Verio™ test strip performance at hypoglycaemic blood glucose (BG) levels (<3.9mmol/L [<70mg/dL]) at seven clinical studies. Methods: Trained clinical staff performed duplicate capillary BG monitoring system tests on 700 individuals with type 1 and type 2 diabetes using blood from a single fingerstick lancing. BG reference values were obtained using a YSI 2300 STAT™ Glucose Analyzer. The number and percentage of BG values within ±0.83. mmol/L (±15. mg/dL) and ±0.56. mmol/L (±10. mg/dL) were calculated at BG concentrations of <3.9. mmol/L (<70. mg/dL), <3.3. mmol/L (<60. mg/dL), and <2.8. mmol/L (<50. mg/dL). Results: At BG concentrations <3.9. mmol/L (<70. mg/dL), 674/674 (100%) of meter results were within ±0.83. mmol/L (±15. mg/dL) and 666/674 (98.8%) were within ±0.56. mmol/L (±10. mg/dL) of reference values. At BG concentrations <3.3. mmol/L (<60. mg/dL), and <2.8. mmol/L (<50. mg/dL), 358/358 (100%) and 270/270 (100%) were within ±0.56. mmol/L (±10. mg/dL) of reference values, respectively. Conclusion: In this analysis of data from seven independent studies, OneTouch Verio test strips provide highly accurate results at hypoglycaemic BG levels. © 2012 Elsevier Ireland Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM), applicable across the population. To implement a successful strategy it is essential to understand the impact of dietary modulation on the postprandial rise in blood glucose concentrations. Methods: Using the highest quality data, a systematic and comprehensive literature review was undertaken. Included in this review were the major macronutrients (carbohydrate, pro-tein, fat), micronutrient vitamins and minerals, non-nutrient phytochemicals and additional foods such as low-calorie sweeteners, vinegar and alcohol. Results: The strongest corroboration of efficacy for improving glucose homeostasis was for insoluble and moderately fermentable cereal-based fiber and mono-unsaturated fatty acids as replacement of saturated fat. Postprandial glycaemia was decreased by intake of viscous soluble fiber and the predominant mechanism of action was considered to be by delaying absorption of co-ingested carbohydrates. There was weaker but substantial evidence that certain phytochemical-rich foods were likely to be effective. This may be associated with the su-ggestion that the gut microbiota plays an important role in me-tabolic regulation, which includes provision of phytochemical and other metabolites. Conclusions: Based on the evidence, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. This suggests that employing a dietary regimen to attenuate the postprandial rise in blood glucose levels along with previously identified targets (reducing excess body weight and an increase in physical activity) will benefit the health of the population and limit the increasing worldwide incidence of T2D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 µatm) or significantly elevated (1,311 µatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 µatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; Delta calcification/Delta Omega was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Cannabidiol (CBD) and D9-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized, double-blind, placebo-controlled study, 62 subjects with noninsulin-treated type 2 diabetes were randomized to five treatment arms: CBD (100 mg twice daily), THCV (5 mg twice daily), 1:1 ratio of CBD and THCV (5 mg/5 mg, twice daily), 20:1 ratio of CBD and THCV (100 mg/5 mg, twice daily), or matched placebo for 13 weeks. The primary end point was a change in HDL-cholesterol concentrations from baseline. Secondary/tertiary end points included changes in glycemic control, lipid profile, insulin sensitivity, body weight, liver triglyceride content, adipose tissue distribution, appetite, markers of inflammation, markers of vascular function, gut hormones, circulating endocannabinoids, and adipokine concentrations. Safety and tolerability end points were also evaluated. RESULTS Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = 21.2 mmol/L; P < 0.05) and improved pancreatic b-cell function (HOMA2 b-cell function [ETD = 244.51 points; P < 0.01]), adiponectin (ETD = 25.9 3 106 pg/mL; P < 0.01), and apolipoprotein A (ETD = 26.02 mmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (2898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated. CONCLUSIONS THCV could represent a newtherapeutic agent in glycemic control in subjects with type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mirocaris fortunata were sampled from the Lucky Strike hydrothermal vent area (Eiffel Tower site) on the mid-Atlantic ridge during the French DIVA 2 cruise (June 1994). Small adults (17 to 22 mm total length), although morphologically identical, could be divided into 2 categories on the basis of pigmentation, lipid composition and C-13/C-12 stable isotope ratios of fatty acids. Highly pigmented small adults (8.6 to 9.2 mu g carotenoid shrimp(-1)) contained higher levels of total lipid than similar-sized individuals containing lower levels of pigment (0.9 to 2.9 mu g carotenoid shrimp(-1)). Lipid class analysis indicated that wax esters comprised 62.5% of total lipid in the former group. These pigmented shrimp also contained high proportions of polyunsaturated fatty acids (PUFA), particularly the phototrophic microplanktonic markers 20:5(n-3) and 22:6(n-3) (14.0 and 33.5% respectively). By contrast small adults (22 mm) and adult shrimp (25 to 26 mm) with low levels of carotenoid pigmentation contained lower amounts of total lipid, little or no wax ester and low levels of 20:5(n-3) and 22:6(n-3), but did contain 16:2(n-4) and 18:2(n-4) and the non-methylene interrupted dienes 20:2 Delta 5,13 and 22:2 Delta 7,15. GC-IRMS analysis of all fatty acids and fatty alcohols in the pigmented small adults indicated delta(13)C values of -18.2 to -27.7 parts per thousand, which is consistent with a photosynthetic carbon source for these compounds. The C-13/C-12 isotope composition of fatty acids from low-pigmented small adults and adults was more variable (-12.5 to -33.1 parts per thousand) and suggests a bimodal distribution which may be attributable to differing nutritional sources or the physiological/reproductive status of these shrimp. Samples of eggs, which are carried by the female on the pleopods, represented approximately 57% of total somatic lipid which indicates a substantial reproductive investment by this species. The egg lipids comprised high proportions of triacylglycerols (64.4 to 78.0% of total lipid) whilst the fatty acid composition was dominated by the monounsaturated fatty acids 16:1(n-7), 18:1(n-7) and 18:1(n-9), which accounted for 65.7 to 33.5% of total fatty acids. By contrast, PUFA were relatively minor components of egg lipids, particularly 20:5(n-3) and 22:6(n-3), which accounted for only 1.1 and 2.9% of total egg fatty acids respectively. This indicates that the reproductive investment by this species is supported mainly by material derived from bacterial chemosynthesis. The potential for M. fortunata hedge betting by producing larvae which either metamorphose at the vent site or adopt a bathypelagic lifestyle and delay metamorphosis to facilitate more widespread dispersal is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>A 36-day trial was conducted to determine the effects of repetitive periods of food restriction and refeeding on growth and energy metabolism in pacu (Piaractus mesopotamicus). A total 264 juvenile fish (36.9 +/- 2.8 g) were fed with the experimental diet for 36 days using three regimes: (i) feeding daily to satiation (FD); (ii) no feed for 3 days, then feeding the same amount offered to the control groups for the next 3 days (NF/R controlled); and (iii) no feed for 3 days, then feeding to apparent satiation for the next 3 days (NF/R at satiation). The treatments were distributed into four tanks each. WG and SGR were higher in FD group. Fish refed showed hyperphagia just up to the second day of refeeding. The worst feed conversion rate and the lowest protein efficiency ratio were found in fish NF/R controlled. The lowest values of visceral fat somatic index were found in both fasted fish groups, particularly in NF/R at satiation. The LL and glycogen concentrations, and the hepatosomatic index were all elevated in both feed restricted fish. Muscle lipid showed a tendency to decrease after the cycle of fasting and refeeding. Plasma free fatty acids and glucose levels were elevated in fish subjected to feeding restrictions while serum triglycerides levels were reduced. Triiodothyronine levels were significantly depressed in fish from the NF/R-controlled group and remained at the same levels as the control fish in fish NF/R at satiation. Results indicated that fish subjected to cyclic periods of 3-day satiation or controlled feeding after 3-days of fasting were unable to achieve the final body weight of fish fed to satiation after 36 days.