940 resultados para Linolenic acid
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In functional dairy products, polyunsaturated fatty acids such as, conjugated linoleic acid (CLA) and alpha-linolenic acid (ALA) have been highlighted for their benefits related to prevention of some chronic diseases. In order to study the effect of type of milk (conventional vs. organic, characterized by a specific fatty acid composition), Bifidobacterium animalis subsp. lactis (BB12, B94, BL04 and HN019) counts, acidification activity and chemical composition (pH, lactose, lactic acid contents and fatty acids profile) were investigated before fermentation and after 24 h of products stored at 4 degrees C. Organic and conventional milk influenced acidification performance and bacteria counts, which was strain-dependent. Higher counts of BB12 were observed in organic milk, whereas superior counts of BL04 were found in conventional milk. Organic fermented milk showed lower levels in saturated fatty acids (FA) and higher in monounsaturated FA contents. Similarly, among bioactive FA, organic fermented milks have higher amounts of trans vaccenic acid (TVA-C18:1t), conjugated linoleic acid (CLA) and slightly higher contents of alpha-linoleic acid (ALA). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.
Resumo:
Adaptation and acclimation to different temperatures of obligate psychrophilic, facultative psychrophilic and mesophilic yeasts. Production of ω-3 and ω-6 polyunsaturated fatty acids by fermentative way. Obligate psychrophilic, facultative psychrophilic and mesophilic yeasts were cultured in a carbon rich medium at different temperatures to investigate if growth parameters, lipid accumulation and fatty acid composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to lower temperature negatively affected their specific growth rate. Obligate psychrophiles exhibited the highest biomass yield (YX/S), followed by facultative psychrophiles, then by mesophiles. The growth temperature did not influence the YX/S of facultative psychrophiles and mesophiles. Acclimation to lower temperature caused the increase in lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophiles. Similar YL/X were found in both facultative and obligated psychrophiles, suggesting that lipid accumulation is not a distinctive character of adaptation to permanently cold environments. The extent of unsaturation of fatty acids was one major adaptive feature of the yeasts which colonize permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expenses of linoleic acid, whereas it was generally scarce or absent in all the others strains. Increased unsaturation of fatty acids was also an acclimatory response of mesophiles and facultative psychrophiles to lower temperature. It’s well known that omega-3 polyunsaturated fatty acids (PUFAs) display a variety of beneficial effects on various organ systems and diseases, therefore a process for the microbial production of omega-3 PUFAs would be of great interest. This work sought also to investigate if one of the better psychrophilic yeast, Rhodotorula glacialis DBVPG 4785, stimulated by acclamatory responses, produced omega-3 PUFAs. In fact, the adaptation of psychrophilic yeasts to cold niches is related to the production of higher amounts of lipids and to increased unsaturation degree of fatty acids, presumably to maintain membrane fluidity and functionality at low temperatures. Bioreactor fermentations of Rhodotorula glacialis DBVPG 4785 were carried out at 25, 20, 15, 10, 5, 0, and -3°C in a complex medium with high C:N ratio for 15 days. High biomass production was attained at all the temperatures with a similar biomass/glucose yield (YXS), between 0.40 and 0.45, but the specific growth rate of the strain decreased as the temperature diminished. The coefficients YL/X have been measured between a minimum of 0.50 to a maximum of 0.67, but it was not possible to show a clear effect of temperature. Similarly, the coefficient YL/S ranges from a minimum of 0.22 to a maximum of 0.28: again, it does not appear to be any significant changes due to temperature. Among omega-3 PUFAs, only α-linolenic acid (ALA, 18:3n-3) was found at temperatures below to 0°C, while, it’s remarkable, that the worthy arachidonic acid (C20:4,n-6), stearidonic acid (C20:4,n-3) C22:0 and docosahexaenoic acid (C22:6n-3) were produced only at the late exponential phase and the stationary phase of batch fermentations at 0 and -3°C. The docosahexaenoic acid (DHA) is a beneficial omega-3 PUFA that is usually found in fatty fish and fish oils. The results herein reported improve the knowledge about the responses which enable psychrophilic yeasts to cope with cold and may support exploitation of these strains as a new resource for biotechnological applications.
Resumo:
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
Resumo:
European hares of both sexes rely on fat reserves, particularly during the reproduc-tive season. Therefore, hares should select dietary plants rich in fat and energy. However, hares also require essential polyunsaturated fatty acids (PUFA) such as linoleic acid (LA) and alpha-linolenic acid (ALA) to reproduce and survive. Although hares are able to absorb PUFA selectively in their gastrointestinal tract, it is unknown whether this mechanism is sufficient to guarantee PUFA supply. Thus, diet selection may involve a trade-off between a preference for energy versus a preference for crucial nutrients, namely PUFA. We compared plant and nutrient availability and use by hares in an arable landscape in Austria over three years. We found that European hares selected their diet for high energy content (crude fat and crude protein), and avoided crude fibre. There was no evidence of a preference for plants rich in LA and ALA. We conclude that fat is the limiting resource for this herbivorous mammal, whereas levels of LA and ALA in forage are sufficiently high to meet daily requirements, especially since their uptake is enhanced by physiological mechanisms. Animals selected several plant taxa all year round, and preferences did not simply correlate with crude fat content. Hence, European hares might not only select for plant taxa rich in fat, but also for high-fat parts of preferred plant taxa. As hares preferred weeds/grasses and various crop types while avoiding cereals, we suggest that promoting heterogeneous habitats with high crop diversity and set-asides may help stop the decline of European hares throughout Europe.
Resumo:
El interés creciente en encontrar alimentos precocinados congelados que se asemejen a productos naturales, capaces de superar un procesado con el menor daño, ha generado un aumento en el estudio de nuevos productos en este campo de la investigación. Las características de cada matriz alimentaria, la composición y estructura de los ingredientes, así como el efecto de las interacciones entre ellos, modifica la textura, estructura y las propiedades físicas y sensoriales del alimento, así como su aceptación por el consumidor. En este contexto, la investigación realizada en esta tesis doctoral se ha llevado a cabo en puré de patata considerado como una matriz alimentaria semisólida y se ha centrado en analizar los efectos de la concentración y modificación de la composición en las propiedades reológicas y de textura, en las propiedades físico-químicas y estructurales, así como en los atributos sensoriales de los purés de patata cuando a estos se le añaden diferentes ingredientes funcionales como fibra de guisante, inulina, aceite de oliva, aislado de proteína de soja, ácidos grasos omega 3 y/o sus mezclas. Para ello, se han realizado cuatro estudios donde se determinan las propiedades reológicas mediante ensayos dinámicos oscilatorios y en estado estacionario, los parámetros instrumentales de textura mediante ensayos de extrusión inversa y de penetración cónica, además de los cambios estructurales a través de cromatografía iónica con detector de pulsos amperométrico, cromatografía de gases con detector de ionización de llama y microscopía electrónica de barrido. Conjuntamente, se han evaluado los atributos sensoriales de los diferentes purés generando los descriptores que mejor definen la calidad sensorial del producto, utilizando un panel de jueces entrenados y valorándose la aceptación global de los nuevos productos mediante un panel de consumidores. En un primer estudio, el puré de patata natural congelado elaborado con crioprotectores se enriqueció con fibra dietética insoluble (fibra de guisante), fibra dietética soluble (inulina) y sus mezclas. La fibra de guisante influyó significativa y negativamente en la textura del puré de patata, percibiéndose en el producto un incremento de la dureza y de la arenosidad, mientras que la inulina produjo un ablandamiento del sistema. En un segundo estudio, el puré de patata natural fresco y congelado/descongelado elaborado con y sin crioprotectores, se enriqueció con fibra dietética soluble (inulina), aceite de oliva virgen extra y sus mezclas. La adición de estos dos ingredientes generó un ablandamiento de la matriz del sistema, produciéndose, sin embargo, un efecto sinérgico entre ambos ingredientes funcionales. La inulina tuvo un efecto más significativo en la viscosidad aparente del producto, mientras que el aceite de oliva virgen extra afectó más significativamente a la pseudoplasticidad, al índice de consistencia y a la viscosidad plástica del mismo. El proceso de congelación y descongelación utilizado favoreció la reducción del tamaño de las partículas de inulina haciéndolas imperceptibles al paladar, obteniéndose productos más cremosos y con mayor aceptabilidad global que sus homólogos frescos. En un tercer estudio, el puré de patata natural fresco y congelado/descongelado elaborado con crioprotectores se enriqueció con mezclas de fibra dietética soluble (inulina) y aislado de proteína de soja. Los resultados demostraron que el ciclo de congelación y descongelación realizado no afecta el grado de polimerización de la inulina. La estructura química de la inulina tampoco se vio afectada por la incorporación de la soja. El proceso de congelación/descongelación, así como la adición de concentraciones altas de inulina y bajas de aislado de proteína de soja, favorecen la disminución de la contribución de la componente viscosa en las propiedades viscoelásticas del puré de patata. La cremosidad fue el único atributo sensorial que presentó una correlación lineal significativa entre las puntuaciones otorgadas por panelistas entrenados y no entrenados. Por último, se elaboró un puré de patata natural fresco y congelado/descongelado optimizado con crioprotectores y enriquecido con la suma de ácido docosahexaenoico (DHA, C22:6 n-3) y ácido eicosapentaenoico (EPA, C20:5 n-3) y con ácido α-linolénico (ALA, C18:3 n-3) microencapsulados. El ciclo de congelación y descongelación no afectó al perfil de ácidos grasos del puré de patata. La adición de omega 3 procedente de aceites de lino y pescado microencapsulados mejora los indicadores nutricionales que definen la calidad de la grasa, obteniéndose un producto más saludable. ABSTRACT The growing interest in finding frozen precooked products that are like a natural product and capable of withstanding initial processing with minimum damage and remaining stable during preservation and reheating prior to consumption has generated an increase in studies of new products in this field of research. The characteristics of each food matrix, the composition and structure of the ingredients and the effect of interactions between them alter the texture, structure and physical and sensory properties of the food product and its acceptance by the consumer. In this context, the research conducted in this doctoral thesis was carried out on mashed potato, considered as a semi-solid food matrix, and focused on analysing the effects of concentration and modification of the composition of the mashed potato matrix on the rheological and textural properties, physicochemical and structural properties and sensory attributes of mashed potato when various functional ingredients are added to it, such as pea fibre, inulin, olive oil, soy protein isolate, omega 3 fatty acids and/or mixtures of these ingredients. Four studies were conducted for this purpose. Rheological properties were determined by oscillatory dynamic tests and stationary state tests, and instrumental texture parameters by backward extrusion and cone penetration tests. Structural changes were studied by ion chromatography with pulsed amperometric detector, gas chromatography with flame ionisation detector and scanning electron microscopy. The sensory attributes of the various mashed potato mixtures were evaluated by generating the descriptors that best defined the sensory quality of the products and using a panel of trained judges, and overall acceptance of the new products was evaluated by a panel of consumers. In the first study, frozen natural mashed potato incorporating cryoprotectants was enriched with insoluble dietary fibre (pea fibre), soluble dietary fibre (inulin) and mixtures of the two. Pea fibre had a significant negative influence on the texture of the mashed potato, producing an increase in hardness and granularity, whereas inulin produced a softening of the system. In the second study, fresh and frozen/thawed natural mashed potato prepared with and without cryoprotectants was enriched with soluble dietary fibre (inulin), extra virgin olive oil and mixtures of the two. The addition of these two ingredients generated softening of the matrix of the system, but a synergic effect between the two functional ingredients was produced. Inulin had a more significant effect on the apparent viscosity of the product, whereas extra virgin olive oil had a more significant effect on its pseudoplasticity, consistency index and plastic viscosity. The freezing and thawing process that was used contributed to a reduction in the size of the inulin particles, making them imperceptible to the palate and producing creamier products with greater overall acceptability than their fresh equivalents. In the third study, the fresh and frozen/thawed natural mashed potato incorporating cryoprotectants was enriched with mixtures of soluble dietary fibre (inulin) and soy protein isolate. The results showed that the freezing and thawing process that was performed did not affect the degree of polymerisation of the inulin. The chemical structure of the inulin was also not affected by the incorporation of soy. The freezing and thawing process and the addition of high concentrations of inulin and low concentrations of soy protein isolate favoured a decrease in the contribution of the viscous component to the viscoelastic properties of the mashed potato. Creaminess was the only sensory attribute that presented a significant linear correlation between the scores given by trained and untrained panellists. Lastly, fresh and frozen/thawed natural mashed potato optimised with cryoprotectants was prepared and enriched with the sum of docosahexaenoic acid (DHA, C22:6 n-3) and eicosapentaenoic acid (EPA, C20:5 n-3) and with α-linolenic acid (ALA, C18:3 n-3), microencapsulated. The freezing and thawing process did not affect the fatty acid profile of the mashed potato. The addition of omega 3 obtained from microencapsulated linseed and fish oils improved the nutritional indicators that define the quality of the fat, producing a healthier product.
Resumo:
The signaling pathways that allow plants to mount defenses against chewing insects are known to be complex. To investigate the role of jasmonate in wound signaling in Arabidopsis and to test whether parallel or redundant pathways exist for insect defense, we have studied a mutant (fad3–2 fad7–2 fad8) that is deficient in the jasmonate precursor linolenic acid. Mutant plants contained negligible levels of jasmonate and showed extremely high mortality (≈80%) from attack by larvae of a common saprophagous fungal gnat, Bradysia impatiens (Diptera: Sciaridae), even though neighboring wild-type plants were largely unaffected. Application of exogenous methyl jasmonate substantially protected the mutant plants and reduced mortality to ≈12%. These experiments precisely define the role of jasmonate as being essential for the induction of biologically effective defense in this plant–insect interaction. The transcripts of three wound-responsive genes were shown not to be induced by wounding of mutant plants but the same transcripts could be induced by application of methyl jasmonate. By contrast, measurements of transcript levels for a gene encoding glutathione S-transferase demonstrated that wound induction of this gene is independent of jasmonate synthesis. These results indicate that the mutant will be a good genetic model for testing the practical effectiveness of candidate defense genes.
Resumo:
A variety of agricultural plant species, including corn, respond to insect herbivore damage by releasing large quantities of volatile compounds and, as a result, become highly attractive to parasitic wasps that attack the herbivores. An elicitor of plant volatiles, N-(17-hydroxylinolenoyl)-l-glutamine, named volicitin and isolated from beet armyworm caterpillars, is a key component in plant recognition of damage from insect herbivory. Chemical analysis of the oral secretion from beet armyworms that have fed on 13C-labeled corn seedlings established that the fatty acid portion of volicitin is plant derived whereas the 17-hydroxylation reaction and the conjugation with glutamine are carried out by the caterpillar by using glutamine of insect origin. Ironically, these insect-catalyzed chemical modifications to linolenic acid are critical for the biological activity that triggers the release of plant volatiles, which in turn attract natural enemies of the caterpillar.
Resumo:
The enzymes that are involved in the elongation of fatty acids differ in terms of the substrates on which they act. To date, the enzymes specifically involved in the biosynthesis of polyunsaturated fatty acids have not yet been identified. In an attempt to identify a gene(s) encoding an enzyme(s) specific for the elongation of γ-linolenic acid (GLA) (18:3n-6), a cDNA expression library was made from the fungus Mortierella alpina. The cDNA library constructed in a yeast expression vector was screened by measuring the expressed elongase activity [conversion of GLA to dihomo-GLA (20:3n-6)] from an individual yeast clone. In this report, we demonstrate the isolation of a cDNA (GLELO) whose encoded protein (GLELOp) was involved in the conversion of GLA to dihomo-GLA in an efficient manner (60% conversion). This cDNA contains a 957-nucleotide ORF that encodes a protein of 318 amino acids. Substrate specificity analysis revealed that this fungal enzyme acted also on stearidonic acid (18:4n-3). This report identifies and characterizes an elongase subunit that acts specifically on the two Δ6-desaturation products, 18:3n-6 and 18:4n-3. When this GLELO cDNA was coexpressed with M. alpina Δ5-desaturase cDNA in yeast, it resulted in the conversion of GLA to arachidonic acid (20:4n-6) as well as the conversion of stearidonic acid to eicosopentaenoic acid (20:5n-3). Thus, this GLELO gene may play an critical role in the bio-production of both n-6 and n-3 polyunsaturated fatty acids.
Resumo:
Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates.
Resumo:
The activation of plant defensive genes in leaves of tomato plants in response to herbivore damage or mechanical wounding is mediated by a mobile 18-amino acid polypeptide signal called systemin. Systemin is derived from a larger, 200-amino acid precursor called prosystemin, similar to polypeptide hormones and soluble growth factors in animals. Systemin activates a lipid-based signaling cascade, also analogous to signaling systems found in animals. In plants, linolenic acid is released from membranes and is converted to the oxylipins phytodienoic acid and jasmonic acid through the octadecanoid pathway. Plant oxylipins are structural analogs of animal prostaglandins which are derived from arachidonic acid in response to various signals, including polypeptide factors. Constitutive overexpression of the prosystemin gene in transgenic tomato plants resulted in the overproduction of prosystemin and the abnormal release of systemin, conferring a constitutive overproduction of several systemic wound-response proteins (SWRPs). The data indicate that systemin is a master signal for defense against attacking herbivores. The same defensive proteins induced by wounding are synthesized in response to oligosaccharide elicitors that are generated in leaf cells in response to pathogen attacks. Inhibitors of the octadecanoid pathway, and a mutation that interrupts this pathway, block the induction of SWRPs by wounding, systemin, and oligosaccharide elicitors, indicating that the octadecanoid pathway is essential for the activation of defense genes by all of these signals. The tomato mutant line that is functionally deficient in the octadecanoid pathway is highly susceptible to attacks by Manduca sexta larvae. The similarities between the defense signaling pathway in tomato leaves and those of the defense signaling pathways of macrophages and mast cells of animals suggests that both the plant and animal pathways may have evolved from a common ancestral origin.
Resumo:
Coenzyme Q (ubiquinone or Q) plays a well known electron transport function in the respiratory chain, and recent evidence suggests that the reduced form of ubiquinone (QH2) may play a second role as a potent lipid-soluble antioxidant. To probe the function of QH2 as an antioxidant in vivo, we have made use of a Q-deficient strain of Saccharomyces cerevisiae harboring a deletion in the COQ3 gene [Clarke, C. F., Williams, W. & Teruya, J. H. (1991) J. Biol. Chem. 266, 16636-16644]. Q-deficient yeast and the wild-type parental strain were subjected to treatment with polyunsaturated fatty acids, which are prone to autoxidation and breakdown into toxic products. In this study we find that Q-deficient yeast are hypersensitive to the autoxidation products of linolenic acid and other polyunsaturated fatty acids. In contrast, the monounsaturated oleic acid, which is resistant to autoxidative breakdown, has no effect. The hypersensitivity of the coq3delta strains can be prevented by the presence of the COQ3 gene on a single copy plasmid, indicating that the sensitive phenotype results solely from the inability to produce Q. As a result of polyunsaturated fatty acid treatment, there is a marked elevation of lipid hydroperoxides in the coq3 mutant as compared with either wild-type or respiratory-deficient control strains. The hypersensitivity of the Q-deficient mutant can be rescued by the addition of butylated hydroxytoluene, alpha-tocopherol, or trolox, an aqueous soluble vitamin E analog. The results indicate that autoxidation products of polyunsaturated fatty acids mediate the cell killing and that QH2 plays an important role in vivo in protecting eukaryotic cells from these products.